Recalibration of the JPCP Cracking and Faulting Models in the AASHTO Pavement ME Design Software

Author(s):  
Jagannath Mallela ◽  
Leslie Titus-Glover ◽  
Biplab B. Bhattacharya ◽  
Alex Gotlif ◽  
Michael I. Darter
Author(s):  
Jhony Habbouche ◽  
Elie Y. Hajj ◽  
Peter E. Sebaaly ◽  
Nathan E. Morian

The overall objective of this study was to assess the use of Level 1 analysis for mechanistic-empirical (ME) rehabilitation designs of deteriorated polymer-modified asphalt concrete (AC) pavements in Nevada using the AASHTOWare® Pavement ME software. This research also explored the possible implementation of a hybrid approach for AC damage characterization to overcome the challenges associated with the use of the Witczak model for estimating the undamaged dynamic modulus master curve of the existing AC layer. Two rehabilitation field projects were used as part of this study. The experimental plan involved falling weight deflectometer (FWD) testing in the right wheelpath before rehabilitation, analysis of core samples, estimation of an equivalent undamaged dynamic modulus, and estimation of equivalent damaged dynamic modulus from FWD backcalculation. The proposed hybrid approach consisted of conducting laboratory dynamic modulus testing on the collected core samples and estimating an equivalent undamaged dynamic modulus at the same FWD testing temperature and loading frequency. The pre-overlay damage, characterized based on the approach in Pavement ME Design software (i.e., using a Witczak prediction model and backcalculated modulus), showed overly high values that did not match with the collected pre-overlay distress data on either of the rehabilitation projects. Based on the findings from this study, the hybrid approach was recommended for implementation by Nevada Department of Transportation (NDOT) when designing AC overlay over polymer-modified asphalt pavements in Nevada. Recommendations for user inputs were also provided for future consideration in Pavement ME Design software.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Hani H. Titi ◽  
Nicholas J. Coley ◽  
Valbon Latifi

This study investigated the impacts of overweight (OW) permit truck traffic on flexible pavement performance in Wisconsin using field investigation and analysis utilizing the AASHTOWare Pavement ME Design software. A database of overweight single-trip permit truck records was analysed to produce a network of Wisconsin corridors heavily travelled by OW trucks. Four Wisconsin highways were selected for investigation due to high levels of OW truck traffic. The research included field work (traffic counts and visual pavement surface distress surveys) and AASHTOWare Pavement ME Design. Comprehensive analyses were conducted to evaluate pavement performance due to normal traffic loads as well as normal traffic loads plus the OW truck traffic loads. The use of mechanistic-empirical (ME) pavement analyses provided a methodology for estimating the proportion of pavement deterioration attributable to OW truck traffic. OW axle load distributions were developed and integrated with baseline truck traffic levels to develop axle load spectra and other traffic input parameters for the ME pavement analysis. The predicted total pavement deterioration levels from the AASHTOWare Pavement ME Design software were generally consistent with the levels of deterioration observed. The proportion of pavement damage and deterioration attributable to OW truck traffic was predicted to constitute a relatively minor proportion of total deterioration, with most distress indices showing relative increases of approximately 0.5% to 4%, with a few outliers. However, due to the small proportion of OW vehicles relative to the overall traffic levels, the OW vehicles were generally predicted to cause up to ten times the per-truck damage as compared with a typical legal-weight truck, depending on the distress mode and the test site.


Sign in / Sign up

Export Citation Format

Share Document