pavement performance
Recently Published Documents


TOTAL DOCUMENTS

942
(FIVE YEARS 225)

H-INDEX

26
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Orhan Kaya ◽  
Leela Sai Praveen Gopisetti ◽  
Halil Ceylan ◽  
Sunghwan Kim ◽  
Bora Cetin

The AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) pavement performance models and the associated AASHTOWare pavement ME design (PMED) software are nationally calibrated using design inputs and distress data largely obtained from National Long-Term Pavement Performance (LTPP) to predict Jointed Plain Concrete Pavement (JPCP) performance measures. To improve the accuracy of nationally-calibrated JPCP performance models for various local conditions, further calibration and validation studies in accordance with the local conditions are highly recommended, and multiple updates have been made to the PMED since its initial release in 2011, with the latest version (i.e., Ver. 2.5.X) becoming available in 2019. Validation of JPCP performance models after such software updates is necessary as part of PMED implementation, and such local calibration and validation activities have been identified as the most difficult or challenging parts of PMED implementation. As one of the states at the forefront of implementing the MEPDG and PMED, Iowa has conducted local calibration of JPCP performance models extending from MEPDG to updated versions of PMED. The required MEPDG and PMED inputs and the historical performance data for the selected JPCP sections were extracted from a variety of sources and the accuracy of the nationally-calibrated MEPDG and PMED performance prediction models for Iowa conditions was evaluated. To improve the accuracy of model predictions, local calibration factors of MEPDG and PMED performance prediction models were identified and gained local calibration experiences of MEPDG and PMED in Iowa are presented and discussed here to provide insight of local calibration for other State Highway Agencies (SHAs).


2021 ◽  
Vol 2021 ◽  
pp. 1-10 ◽  
Author(s):  
Jue Li ◽  
Hui Wei ◽  
Yongsheng Yao ◽  
Xin Hu ◽  
Lei Wang

In view of the deficiency that traditional pavement performance evaluation index did not consider the influence of their difference on weight, the grade of the evaluation index also did not take into account intermediate state and the impact of uncertainty on the evaluation results, a determination method of pavement performance evaluation index weight based on entropy theory was developed. The unascertained measurement function of evaluation index was performed by left-half ladder distribution, and unascertained measurement matrix was obtained. The index weight was calculated by minimum entropy theory, and the practicability of this method was verified through a concrete example finally. The results show that there were different weights in different samples, which depended on index measurement function and were the overall characterization of comprehensive measurement of every index. The method which is based on the given weighting factor did not conform to the engineering facts. It was difficult to identify the importance of the pavement performance evaluation index in different samples. The balance of the various indexes is better to be considered in the proposed method, and the comprehensive situation of pavement performance is really reflected, which improves the evaluation of the reliability.


Author(s):  
Halil Ibrahim Fedakar

Artificial neural network (ANN) has been successfully used for developing prediction models for resilient modulus (Mr). However, no reliable Mr formula derived from these models has been proposed in previous studies, although engineers/researchers need empirical formulae for hand calculation of Mr. Therefore, this study aimed to propose reliable empirical formulae for the Mr of fine-grained soils using ANN. For this purpose, thousands of ANN models were developed using the long-term pavement performance (LTPP) and external datasets. The input parameters were the percentage of soil particles passing through #200 sieve (P200), silt percentage (SP), clay percentage (CP), liquid limit (LL), plasticity index (PI), maximum dry density ([ρdry]max), optimum moisture content (wopt), confining pressure (σc), and nominal maximum axial stress (σz). The ANN models were compared with several constitutive models. The results indicate that the constitutive models failed to predict the Mr, and the best Mr predictions were obtained by the ANN-C9 (P200, SP, CP, LL, PI, σc, and σz), ANN-C10 (P200, SP, CP, [ρdry]max, wopt, σc, and σz), and ANN-C11 (P200, SP, CP, LL, PI, [ρdry]max, wopt, σc, and σz) models. Thus, the structures of these ANN models were formulated and proposed as the new empirical formulae for the Mr of fine-grained soils. Sensitivity analysis was also performed on these ANN models. It was determined that (ρdry)max is the most influential parameter in the ANN-C10 model, and LL is the most influential parameter in the ANN-C9 and ANN-C11 models. On the other hand, σc and σz are the least influential parameters.


2021 ◽  
Vol 147 (4) ◽  
pp. 04021049
Author(s):  
Abdualmtalab Ali ◽  
Heena Dhasmana ◽  
Kamal Hossain ◽  
Amgad Hussein

Author(s):  
Zhe Li ◽  
Jiupeng Zhang ◽  
Tao Liu ◽  
Yichun Wang ◽  
Jianzhong Pei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document