Structural Response of Skew RC Box Girder Bridge

1982 ◽  
Vol 108 (1) ◽  
pp. 89-104
Author(s):  
Alexander C. Scordelis ◽  
S. Tanvir Wasti ◽  
Frieder Seible
1993 ◽  
Vol 20 (1) ◽  
pp. 107-119 ◽  
Author(s):  
S. F. Ng ◽  
M. S. Cheung ◽  
H. M. Hachem

To better understand the behaviour of curved box girder bridges in resisting eccentric design truck loads, and the influence of plan curvature on the structural response, a model study was conducted at the University of Ottawa. In this study, the elastic response of a curved composite box girder bridge model was evaluated experimentally and confirmed analytically using the finite element method. Analytical predictions of both vertical displacements and normal stresses at critical sections compared fairly well with those evaluated experimentally. The isoparametric thin shell element employed in the analysis proved to be versatile and provided an accurate representation of the various structural components of a curved box girder bridge. Despite the eccentric nature of the applied OHBDC design truck loads and the bridge plan curvature, it was evident that in resisting the applied live loads, the girders at critical sections share equal proportions of the applied bending moments. Key words: bridge, curved, cellular, composite, eccentric loads, static, linear, experimental, finite element.


1982 ◽  
Vol 108 (7) ◽  
pp. 1695-1695
Author(s):  
Alexander C. Scordelis ◽  
S. Tanvir Wasti ◽  
Frieder Seible

1977 ◽  
Vol 103 (8) ◽  
pp. 1507-1524
Author(s):  
Alexander C. Scordelis ◽  
Per K. Larsen

1975 ◽  
Vol 101 (5) ◽  
pp. 1141-1145
Author(s):  
Alexander C. Scordelis ◽  
Jack G. Bouwkamp ◽  
S. Tanvir Wasti

1973 ◽  
Vol 99 (10) ◽  
pp. 2031-2048
Author(s):  
Alexander C. Scordelis ◽  
Jack G. Bouwkamp ◽  
S. Tanvir Wasti

PCI Journal ◽  
1986 ◽  
Vol 31 (3) ◽  
pp. 22-47 ◽  
Author(s):  
Charles C. Zollman ◽  
Serge H. Barbaux

Sign in / Sign up

Export Citation Format

Share Document