bridge model
Recently Published Documents


TOTAL DOCUMENTS

500
(FIVE YEARS 129)

H-INDEX

30
(FIVE YEARS 4)

2022 ◽  
pp. 136943322110700
Author(s):  
Wenxue Zhang ◽  
Lijun Su ◽  
Cheng Zhang ◽  
Yongrui Zheng ◽  
Weifeng Yang

The seismic requirements of piers with fixed bearings (the fixed pier) for continuous girder bridges are relatively high, while the potential seismic capabilities of piers with sliding bearings (the sliding piers) are not fully utilized. To solve this contradiction, a new type of winding rope shock absorption device activated by a fluid viscous damper (WRD-D) was proposed. The WRD-D was installed on the top of the sliding piers, and the both ends of a fluid viscous damper were connected to the superstructure by winding ropes. During an earthquake, the damping force rises with the increase of relative speed between the sliding piers and the superstructure, activating the WRD-D and producing large frictional resistance, subsequently causing the sliding piers and the fixed pier to bear the seismic load cooperatively. In this study, the working mechanism of the WRD-D was researched. The shaking table test of a scaled continuous girder bridge model employing the WRD-D was conducted. The test results reveal that the WRD-D can effectively reduce the seismic requirements of the fixed pier and the superstructure displacements.


2022 ◽  
pp. 136943322110561
Author(s):  
Zhenhua Nie ◽  
Yongkang Xie ◽  
Jun Li ◽  
Hong Hao ◽  
Hongwei Ma

This paper proposes a data-driven method using subspace projection residual of the responses to identify the damage locations in bridges subjected to moving loads. In this method, a moving window with a certain length determined by the sampling frequency and the fundamental frequency of the measured responses is used to cut out the acceleration responses of the bridge subjected to a moving vehicle. The characteristic subspaces of the windowed signals are subsequently extracted to calculate the local damage index using the subspace projection residual. When the window moves to the damage location, the orthogonality between the active subspace of the damaged state and the null subspace of the healthy state is invalid, which leads to a relatively large projection residual that can be used to localize the damage. To improve the reliability of the proposed approach, a one-side upper confidence limit is introduced. A simply supported beam bridge subjected to a moving mass is simulated to verify the effectiveness of the proposed method. Numerical results indicate that the proposed approach can accurately localize the single and multiple damages, even when the responses are smeared with a significant noise. Experimental tests conducted on a steel beam bridge model also demonstrate the performance and accuracy of the proposed approach. The results demonstrate that the proposed method can localize the damage even with a small number of sensors, indicating the method has a good and promising performance for practical engineering applications.


2021 ◽  
Vol 6 (12) ◽  
pp. 2208-2212
Author(s):  
Insan Kamil ◽  
Rafian Tistro ◽  
Salma Alwi ◽  
Dhiana DW

The use of wood as a construction material for simple bridges has begun to be abandoned and switch to concrete or steel bridges with considerations of durability and structural strength. However, from an ecological perspective, wood is still the most renewable material by nature itself. Returning to ecologic natural materials is an issue of the United Nation that needs to be supported by educational institutions. This community service begins with determining the span and height of the bridge, followed by planning and calculating the strength of the material. The parts of the bridge are manufactured in the workshop of the Civil Engineering Department, Samarinda State Polytechnic. The assembly and erection processes are carried out in the field. The uniqueness of this program is in the application of the wooden arc bridge model with a raft unloading system by presenting an attractive aesthetic, so that it is hoped that it can again become an option in determining the type of bridge for users.


Author(s):  
Liang Xu ◽  
Yi Hui ◽  
Ke Li

This study proposes an approach to set up a continuum full bridge model with spatially inclined cables based on the Hamilton principle. The dynamic governing functions, considering the geometric non-linearities of cables and deck, represent simultaneously the vertical motion of deck and vertical–horizontal motion of cable. With the comparison of the modal properties obtained from the model to those from the accurate model, results show that the proposed model is capable of accurately simulating the modal properties. The primary resonance responses and corresponding frequency-response curves are obtained through the multiple-scale-method. A finite element (FE) model is established, and the corresponding non-linear dynamic analysis in time domain is conducted. Comparing the results from two models, it can be checked that the proposed model is reliable. According to the results of the proposed model, it is found that the second-order shape functions (SOSFs) play a significant role in the system response. Once the non-linear vibration of the bridge becomes significant only considering the excited mode with using the classical Galerkin decomposition cannot correctly predict the structure response. The SOSFs can be classified into stationary and vibrating components. The vibrating component can deviate the time-series of response from the harmonic wave, and the stationary component directly determines the mean value of the time-series.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 208
Author(s):  
Álvaro Pérez Mayo ◽  
Ainhoa Galarza ◽  
Asier López Barriuso ◽  
Javier Vadillo

Renewable energy sources are becoming more relevant in recent decades in power generation, leading to investment in developing efficient systems. Specifically, in photovoltaic energy, modular converters are attracting interest since their characteristics enable them to work at high voltage and optimize the generated energy. However, the control strategies found the literature limit the scalability potential of modular converters. The main aim of this paper is to propose a scalable control strategy for a grid-tied CHB (Cascaded H-Bridge) converter for large-scale photovoltaic power plants. The control proposed is able to take full advantage of converter scalability and modularity, being based on the parameters needed for bipolar sinusoidal PWM (Pulse Width Modulation), and thus reducing the calculus required and simplifying its implementation. Power imbalances are overcome including the zero-sequence vector injection to allow power exchange between phases. Furthermore, the parameter used for power factor control has been discretized and discretization time analysis shows that the control strategy is stable and does not require a high-speed communication channel. For validation purposes, simulations are conducted on a downsized 12 H-bridge model.


2021 ◽  
pp. 88-105
Author(s):  
A. Yu Muyzemnek ◽  
T. N Ivanova ◽  
E. D Kartashova

Anisotropy of mechanical properties of the entire material and each of its layers is characteristic for polymer layered composite materials, as well as the fact that production processes of the composite material and parts from it are often combined in time. In this case, the elastic properties and strength of the material will be different not only in the thickness of the part, but also at each point. All this leads to a complication of the design process, which is due to the need to determine the elastic properties and strength of the polymer layered composite materials, taking into account the structure of the entire material and each of its layers. This work aims at evaluating the existing computational methods of finding effective characteristics of elastic properties by comparing computation results obtained by various methods with each other, as well as with the experimental results related to elastic properties of polymer layered composite materials from carbon and glass fabrics. We estimated the computational methods of finding effective characteristics of the elastic properties of composites based on the experimental results of finding the characteristics of the elastic properties of polymer layered composite materials made of carbon and glass fabrics, differing in density and type of weaving. The experimental values of the effective characteristics of elastic properties were determined as a result of standard tensile tests of laboratory specimens. As a result of the study, it was found that all the considered models and methods give consistent results when calculating the longitudinal modulus of elasticity E 11, the results of calculating shear modulus E 33 and shear moduli G 12 and G 23 are less consistent for all the considered materials. The comparison of the results of the experimental studies and computations showed that the Chamis model and the bridge model are better than other models to predict the values of the longitudinal elastic modulus.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jie Guo ◽  
Kunpeng Wang ◽  
Hongtao Liu ◽  
Nan Zhang

Based on the Hong Kong-Zhuhai-Macao project, considering the fluid-structure interaction and soil-structure interaction, the seismic response of a sea-crossing continuous girder bridge is analyzed. Three-dimensional nonlinear numerical bridge model is developed, in which the hydrodynamic force is represented by added mass and pile-soil interaction is represented by p-y elements. Meanwhile, stratification of soil is considered in the free field analysis. Through the comparison of responses of the bridge cases, the effects of earthquake-induced hydrodynamic force and pile-soil interaction are studied. For the influence of hydrodynamic force, the results show that it is relatively slight as compared with pile-soil interaction; moreover pile foundation is more sensitive to it than other bridge components. The influence of pile-soil interaction is relatively significant. When both of the interactions are considered, the influence is not a simple superposition of acting alone, so it is recommended to consider both factors in dynamic analysis.


Author(s):  
Leandro Ferreira Friedrich ◽  
Édiblu Silva Cezar ◽  
Angélica Bordin Colpo ◽  
Boris Nahuel Rojo Tanzi ◽  
Mario Sobczyk ◽  
...  

This work focuses on analyzing acoustic emission (AE) signals as a means to predict failure in structures. Two main approaches are considered: (i) long-range correlation analysis using both the Hurst (H) and the Detrended Fluctuation Analysis (DFA) exponents, and (ii) natural time domain (NT) analysis. These methodologies are applied to the data collected from two application examples: a glass fiber reinforced polymeric plate and a spaghetti bridge model, where both structures were subjected to increasing loads until collapse. A traditional (AE) signal analysis is also performed to reference the study of the other methods. Results indicate that the proposed methods yield a reliable indication of failure in the studied structures.


2021 ◽  
Vol 45 (4) ◽  
pp. 730-743
Author(s):  
Jack A. Rall

This article traces 60 years of investigation of the molecular motor of skeletal muscle from the 1940s through the 1990s. It started with the discovery that myosin interaction with actin in the presence of ATP caused shortening of threads of actin and myosin. In 1957, structures protruding from myosin filaments were seen for the first time and called “cross bridges.” A combination of techniques led to the proposal in 1969 of the “swinging-tilting cross bridge” model of contraction. In the early 1980s, a major problem arose when it was shown that a probe attached to the cross bridges did not move during contraction. A spectacular breakthrough came when it was discovered that only the cross bridge was required to support movement in an in vitro motility assay. Next it was determined that single myosin molecules caused the movement of actin filaments in 10-nm steps. The atomic structure of the cross bridge was published in 1993, and this discovery supercharged the muscle field. The cross bridge contained a globular head or motor domain that bound actin and ATP. But the most striking feature was the long tail of the cross bridge surrounded by two subunits of the myosin molecule. This structure suggested that the tail might act as a lever arm magnifying head movement. Consistent with this proposal, genetic techniques that lengthened the lever arm resulted in larger myosin steps. Thus the molecular motor of muscle operated not by the tilting of the globular head of myosin but by tilting of the lever arm generating the driving force for contraction.


2021 ◽  
Vol 246 ◽  
pp. 112953
Author(s):  
Qiang Mao ◽  
Matteo Mazzotti ◽  
Mustafa Furkan ◽  
Aaron Hicks ◽  
Ivan Bartoli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document