Calculation of excitation energies of open-shell molecules with spatially degenerate ground states. II. Transformed reference via intermediate configuration Kohn-Sham time dependent density functional theory oscillator strengths and magnetic circular dichroism C terms

2006 ◽  
Vol 124 (14) ◽  
pp. 144105 ◽  
Author(s):  
Michael Seth ◽  
Tom Ziegler
1999 ◽  
Vol 579 ◽  
Author(s):  
Naoto Uimezawa ◽  
Susumu Saito

ABSTRACTWe study tile optical absorption spectra of Na clusters using the time-dependent density-functional theory with gradient correction. A jellium-sphere background model, which is free from basis-set incompleteness error and is suitable for the comparison of various theoretical methods, is adopted. For energies of surface-plasinon excitations governing profiles of photoabsorption spectra with huge oscillator strengths., the gradient correction by van Leeiiwen and Baerends with correct asymptotic behavior of the effective potential is found to show considerable improvement over the time-dependent local-density approximation.


2005 ◽  
Vol 04 (01) ◽  
pp. 265-280 ◽  
Author(s):  
SUSUMU YANAGISAWA ◽  
TAKAO TSUNEDA ◽  
KIMIHIKO HIRAO

We investigated the electron configurations that are dominant in excited states of molecules in time-dependent density functional theory (TDDFT). By taking advantage of the discussion on off-diagonal elements in the TDDFT response matrix (Appel et al., Phys Rev Lett, 90, 043005, 2003), we can pick up electron transitions that contribute to an excitation of interest by making use of the diagonal elements of the TDDFT matrix. We can obtain approximate excitation energies by calculating a TDDFT submatrix, which is contracted for a list of collected transitions. This contracted TDDFT was applied to the calculation of excitation energies of the CO molecule adsorbing Pt 10 cluster and some prototype small molecules. Calculated results showed that a TDDFT excitation energy is dominated by a few electron configurations, unless severe degeneracy is involved.


Sign in / Sign up

Export Citation Format

Share Document