Excitation Spectra in the Time-Dependent Density-Functional Theory with Gradient Correction

1999 ◽  
Vol 579 ◽  
Author(s):  
Naoto Uimezawa ◽  
Susumu Saito

ABSTRACTWe study tile optical absorption spectra of Na clusters using the time-dependent density-functional theory with gradient correction. A jellium-sphere background model, which is free from basis-set incompleteness error and is suitable for the comparison of various theoretical methods, is adopted. For energies of surface-plasinon excitations governing profiles of photoabsorption spectra with huge oscillator strengths., the gradient correction by van Leeiiwen and Baerends with correct asymptotic behavior of the effective potential is found to show considerable improvement over the time-dependent local-density approximation.

2019 ◽  
Author(s):  
Kamal Batra ◽  
Stefan Zahn ◽  
Thomas Heine

<p>We thoroughly benchmark time-dependent density- functional theory for the predictive calculation of UV/Vis spectra of porphyrin derivatives. With the aim to provide an approach that is computationally feasible for large-scale applications such as biological systems or molecular framework materials, albeit performing with high accuracy for the Q-bands, we compare the results given by various computational protocols, including basis sets, density-functionals (including gradient corrected local functionals, hybrids, double hybrids and range-separated functionals), and various variants of time-dependent density-functional theory, including the simplified Tamm-Dancoff approximation. An excellent choice for these calculations is the range-separated functional CAM-B3LYP in combination with the simplified Tamm-Dancoff approximation and a basis set of double-ζ quality def2-SVP (mean absolute error [MAE] of ~0.05 eV). This is not surpassed by more expensive approaches, not even by double hybrid functionals, and solely systematic excitation energy scaling slightly improves the results (MAE ~0.04 eV). </p>


2021 ◽  
Vol 32 ◽  
Author(s):  
Hieu Nguyen-Truong

We calculate excitation spectra of cubic perovskites ATiO3 (A = Ca, Sr, Ba, Pb). The calculations are performed within the time-dependent density functional theory, including local field effects. The theoretical calculations show that the perovskites have a plasmon mode at around 12 eV, which is not observed in experiments.


2010 ◽  
Vol 24 (24) ◽  
pp. 4811-4820
Author(s):  
Y. P. ZHANG ◽  
F. S. ZHANG ◽  
Y. GAO ◽  
H. W. CHANG ◽  
G. Q. XIAO

The process of multielectron transfer from a Na 4 cluster induced by highly charged C 6+, C 4+, C 2+ and C + ions is studied using the method of time-dependent density functional theory within the local density approximation combined with the use of pseudopotential. The evolution of dipole moment changes and emitted electrons in Na 4 is obtained and the time-dependent probabilities with various charges are deduced. It is shown that the Na 4 cluster is strongly ionized by C 6+ and that the number of emitted electrons per atom of Na 4 is larger than that of Na 2 under the same condition. One can find that the detailed information of the emitted electrons from Na 4 is different from the same from Na 2, which is possibly related to the difference in structure between the two clusters.


Sign in / Sign up

Export Citation Format

Share Document