Pulse Tube Refrigerator Based Cryogenic Cooling Circuit for NMR Cold Probes

Author(s):  
M. D. Atrey
Author(s):  
Dion Savio Antao ◽  
Bakhtier Farouk

An orifice type pulse tube refrigerator (OPTR) was designed, built and operated to provide cryogenic cooling. The OTPR is a travelling wave thermoacoustic refrigerator that operates on a modified reverse Stirling cycle. We consider a system that is comprised of a pressure wave generator (a linear motor), an aftercooler heat-exchanger, a regenerator (comprising of a porous structure for energy separation), a pulse tube (in lieu of a displacer piston as found in Stirling refrigerators) with a cold and a warm heat-exchanger at its two ends, a needle-type orifice valve, an inertance tube and a buffer volume. The experimental characterization is done at various values of mean pressure of helium (∼ 0.35 MPa–2.2 MPa), amplitude of pressure oscillations, frequency of operation and size of orifice opening. A detailed time-dependent axisymmetric computational fluid dynamic (CFD) model of the OPTR is simulated to predict the performance of the OPTR. In the CFD model, the continuity, momentum and energy equations are solved for both the refrigerant gas (helium) and the porous media regions (the regenerator and the three heat-exchangers) in the OPTR. An accurate representation of heat transfer in the porous media is achieved by employing a thermal non-equilibrium model to couple the gas and solid (porous media) energy equations. In the future, a validated computational model can be used for system improvement and optimization.


Author(s):  
Dion Savio Antao ◽  
Bakhtier Farouk

A helium filled orifice type pulse tube refrigerator (OPTR) was designed, built and operated to provide cryogenic cooling. The OTPR is a travelling wave thermoacoustic refrigerator that operates on a modified reverse Stirling cycle. The experimental studies are carried out at various values of the mean pressure of helium (0.35 MPa – 2.2 MPa), amplitudes of pressure oscillations, frequencies of operation and sizes of orifice opening. The experimental results are compared with the predictions from a detailed time-dependent numerical model. In the CFD model, the compressible forms of the continuity, momentum and energy equations are solved for both the refrigerant gas (helium) and the porous media regions (the regenerator and the three heat-exchangers) in the OPTR. An improved representation of heat transfer in the porous media is achieved by employing a thermal non-equilibrium model to couple the gas and solid (porous media) energy equations. The model predictions show better comparisons with the experimental results when the effects of wall thicknesses of the various components of the OPTR are included in the model.


Author(s):  
V. Destino ◽  
R. Bonifetto ◽  
F. Di Maio ◽  
N. Pedroni ◽  
R. Zanino ◽  
...  

1998 ◽  
pp. 2023-2030 ◽  
Author(s):  
N. Nakamura ◽  
M. Shiraishi ◽  
K. Seo ◽  
M. Murakami

Sign in / Sign up

Export Citation Format

Share Document