pulse tube
Recently Published Documents


TOTAL DOCUMENTS

1418
(FIVE YEARS 133)

H-INDEX

30
(FIVE YEARS 5)

Author(s):  
Z.M. Guo ◽  
J.M. Pfotenhauer ◽  
F.K. Miller ◽  
S.W. Zhu

Author(s):  
Chetan O Yadav ◽  
P. V. Ramana

A Miniature Pulse Tube Cryocooler (MPTC) is the first selection for the cooling of IR sensors, infrared detectors, etc. in space technology. The regenerator is one of the key components to operate an MPTC at high efficiency. The objective of this study is to explore the possibilities of the different matrices as regenerator filler materials for MPTC operating at ultra-high frequencies. REGEN 3.3 is one of the best software available for the design and optimization of cryocooler regenerators. We have used REGEN 3.3 for numerical simulations of the three different regenerator matrix materials viz. stainless steel wire mesh screen (SS 635#), brass wire mesh screen (500#) and copper wire mesh screen (500#) at the hot end and cold end temperatures of 300[Formula: see text]K and 80[Formula: see text]K for COP, cooling power, total power losses and pressure losses, at an ultra-high frequency of 100[Formula: see text]Hz and 200[Formula: see text]Hz. The simulation results depict that the regenerator using stainless steel mesh screen shows better results than that of the brass mesh screen and copper mesh screen at 100[Formula: see text]Hz. However, the performance of brass mesh screen and copper mesh screen performs better than the stainless steel at 200[Formula: see text]Hz. Therefore, the proposed matrix materials can be used as regenerator materials for the MPTC at ultra-high frequencies with better performances.


Cryogenics ◽  
2021 ◽  
pp. 103417
Author(s):  
Jack-André Schmidt ◽  
Bernd Schmidt ◽  
Dirk Dietzel ◽  
Jens Falter ◽  
Guenter Thummes ◽  
...  

Author(s):  
T.S. Feng ◽  
H.L. Chen ◽  
X.T. Liu ◽  
Y.Q. Xun ◽  
J.T. Liang

Author(s):  
Yijun Chao ◽  
Bo Wang ◽  
Haiying Li ◽  
Ming Xia ◽  
Qinyu Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document