Volume 2: Heat Transfer Enhancement for Practical Applications; Fire and Combustion; Multi-Phase Systems; Heat Transfer in Electronic Equipment; Low Temperature Heat Transfer; Computational Heat Transfer
Latest Publications


TOTAL DOCUMENTS

128
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791844786

Author(s):  
Chun K. Kwok ◽  
Matthew M. Asada ◽  
Jonathan R. Mita ◽  
Weilin Qu

This paper presents an experimental study of single-phase heat transfer characteristics of binary methanol-water mixtures in a micro-channel heat sink containing an array of 22 microchannels with 240μm × 630μm cross-section. Pure water, pure methanol, and five methanol-water mixtures with methanol molar fraction of 16%, 36%, 50%, 63% and 82% were tested. Key parametric trends were identified and discussed. The experimental study was complemented by a three-dimensional numerical simulation. Numerical predictions and experimental data are in good agreement with a mean absolute error (MAE) of 0.87%.


Author(s):  
Matthew P. Rudy ◽  
Thomas M. Rudy ◽  
Himanshu M. Joshi ◽  
Amar S. Wanni

Within the past 30 years, many Enhanced Heat Transfer (EHT) technologies have become available in a number of forms for application in heat exchangers. These technologies are used in various industries to widely different extents. In 1999, H. Joshi, T. Rudy, and A. Wanni, former Ph.D. students of Dr. Ralph L. Webb and specialists in the application of EHTs in the Petroleum Industry prepared a paper for the Journal of Enhanced Heat Transfer that reviewed the extent of use of EHT Technologies in the Petroleum Industry [1]. The current paper reviews how the application of EHT in the Petroleum Industry has changed in the last 14 years.


Author(s):  
Arif B. Ozer ◽  
Donald K. Hollingsworth ◽  
Larry. C. Witte

A quenching/diffusion analytical model has been developed for predicting the wall temperature and wall heat flux behind bubbles sliding in a confined narrow channel. The model is based on the concept of a well-mixed liquid region that enhances the heat transfer near the heated wall behind the bubble. Heat transfer in the liquid is treated as a one-dimensional transient conduction process until the flow field recovers back to its undisturbed level prior to bubble passage. The model is compared to experimental heat transfer results obtained in a high-aspect-ratio (1.2×23mm) rectangular, horizontal channel with one wide wall forming a uniform-heat-generation boundary and the other designed for optical access to the flow field. The working fluid was Novec™ 649. A thermochromic liquid crystal coating was applied to the outside of the uniform-heat-generation boundary, so that wall temperature variations could be obtained and heat transfer coefficients and Nusselt numbers could be obtained. The experiments were focused on high inlet subcooling, typically 15–50°C. The model is able to capture the elevated heat transfer rates measured in the channel without the need to consider nucleate boiling from the surface or microlayer evaporation from the sliding bubbles. Surface temperatures and wall heat fluxes were estimated for 17 different experimental conditions using the proposed model. Results agreed with the measured values within ±15% accuracy. The insight gathered from comparing the results of the proposed model to experimental results provides the basis for a better understanding of the physics of subcooled bubbly flow in narrow channels.


Author(s):  
Joshua D. Sole ◽  
Bradley J. Shelofsky ◽  
Robert P. Scaringe ◽  
Gregory S. Cole

Electronics of all types, particularly those in the military aviation arena, are decreasing in size while at the same time increasing in power. As a result, newer high-heat-flux electronic components are exceeding the cooling capabilities of conventional single-phase military aviation coldplates and coolants. It is for this reason that we have been investigating new methods to cool the next generation of high-heat-flux military aviation electronics. In this work, a novel method of inducing two-phase conditions within a microchannel heat exchanger has been developed and demonstrated. Micro-orifices placed upstream of each microchannel in a microchannel heat exchanger not only cause an improvement in flow distribution, but can also induce cavitation in the incoming subcooled refrigerant and result in favorable two-phase flow regimes for enhanced heat transfer. In this study, R-134a is used as the coolant in the cavitation enhanced microchannel heat exchanger (CEMC-HX) which has been integrated into a vapor compression refrigeration system. Multiple micro-orifice geometries combined with a fixed microchannel geometry (nominally 250 μm × 250 μm) were investigated over a range of applied base heat fluxes (10–100 W/cm2) and mass fluxes (500–1000 kg/m2-s). Two-phase heat transfer coefficients exceeding 100,000 W/m2-K at refrigerant qualities of less than 5% have been demonstrated due to the achievement of preferential, cavitation-induced, flow regimes such as annular flow. To the author’s knowledge, this is the highest heat transfer coefficient ever reported in the literature for R-134a. Additionally, a four term two-phase heat transfer correlation was developed that achieved a mean absolute error (MAE) of 25.5%.


Author(s):  
Phani Ganesh Elapolu ◽  
Pradip Majumdar ◽  
Steven A. Lottes ◽  
Milivoje Kostic

One of the major concerns affecting the safety of bridges with foundation supports in river-beds is the scouring of river-bed material from bridge supports during floods. Scour is the engineering term for the erosion caused by water around bridge elements such as piers, monopiles, or abutments. Scour holes around a monopile can jeopardize the stability of the whole structure and will require deeper piling or local armoring of the river-bed. About 500,000 bridges in the National Bridge Registry are over waterways. Many of these are considered as vulnerable to scour, about five percent are classified as scour critical, and over the last 30 years bridge failures caused by foundation scour have averaged about one every two weeks. Therefore it is of great importance to predict the correct scour development for a given bridge and flood conditions. Apart from saving time and money, integrity of bridges are important in ensuring public safety. Recent advances in computing boundary motion in combination with mesh morphing to maintain mesh quality in computational fluid dynamic analysis can be applied to predict the scour hole development, analyze the local scour phenomenon, and predict the scour hole shape and size around a pier. The main objective of the present study was to develop and implement a three dimensional iterative procedure to predict the scour hole formation around a cylindrical pier using the mesh morphing capabilities in the STARCCM+ commercial CFD code. A computational methodology has been developed using Python and Java Macros and implemented using a Bash script on a LINUX high performance computer cluster. An implicit unsteady approach was used to obtain the bed shear stresses. The mesh was iteratively deformed towards the equilibrium scour position based on the excess shear stress above the critical shear stress (supercritical shear stress). The model solves the flow field using Reynolds Averaged Navier-Stokes (RANS) equations, and the standard k–ε turbulence model. The iterative process involves stretching (morphing) a meshed domain after every time step, away from the bottom where scouring flow parameters are supercritical, and remeshing the relevant computational domain after a certain number of time steps when the morphed mesh compromises the stability of further simulation. The simulation model was validated by comparing results with limited experimental data available in the literature.


Author(s):  
Mehdi Raessi ◽  
Rajkamal Sendha

We present our recent study on spreading and solidification of micro-droplets of alumina impacting onto patterned surfaces textured by micron-size obstacles. We employed an in-house, three-dimensional computational tool that solves the flow and energy equations and takes into account the solidification. We investigated the spreading dynamics, heat transfer, and solidification of the droplets as a function of the height and spacing of the obstacles as well as the impact velocity. The results show that, independent of the obstacle height, the droplet assumes a disk-shape geometry when the obstacles are either packed tightly or are very distanced. The results at intermediate obstacle spacings exhibit the most significant deformations, where the droplet develops long fingers. A quantitative relationship shows the collapse of the final spread diameter of the droplet normalized by the obstacle spacing when plotted against the spacing for different impact velocity as well as the obstacle height.


Author(s):  
Matthew Frenkel ◽  
Marlon Avellan ◽  
Zhixiong Guo

It has been previously demonstrated that the optical whispering-gallery modes inside a micro-sphere resonators can be used for extremely sensitive temperature sensing. This work attempts to utilize the high-resolution measurements of an optical micro-annulus in order to detect the temperature change in a current carrying wire. A wire is coated with a thin layer of dielectric material as an annular sensor and positioned next to an optical taper. Current is then run through the wire to create joule heating and the temperature change is correlated with the frequency shift in the whispering-gallery mode resonance inside the micro-annulus. The experimental results will be analyzed and presented.


Author(s):  
Lian Ning ◽  
Chenn Q. Zhou ◽  
Jiemin Zhou

In this paper, a numerical model of the thermodynamic process was developed, by using CFD (software) technique and considering the gas flow, the diffused combustion and the radiative heat transfer in the molten salt furnace. This model aims to optimize the operating parameters. Simulation results demonstrate that the performances of the salt furnace can be improved by optimization. The temperatures along the fire wall circumference are quite even, and the deviant combustion phenomenon is not observed. A back-flow formed in the upper part of the furnace chamber enhances the circulation and the mixing of the gas, helping to effectively stabilize the combustion in the furnace. The behaviors of CO, CO2, NOx and H2O are presented in terms of the gas flow, temperature distribution and volumetric concentration distribution. The furnace with the constant air flow rate of 15500Nm3/h and the angle of guide vane at 48∼50 ° can increase the combustion effectiveness.


Author(s):  
Isaac L. Hunsaker ◽  
David J. Glaze ◽  
Jeremy N. Thornock ◽  
Philip J. Smith

There exists a general need to compare radiative fluxes from experimental radiometers with fluxes computed in Thermal/Fluid simulations. Unfortunately, typical numerical simulation suites lack the ability to predict fluxes to objects with small view angles thus preventing validation of simulation results. A new model has been developed that allows users to specify arbitrary view angles, orientations, and locations of multiple radiometers, and receive as the output, high-accuracy radiative fluxes to these radiometers. This virtual radiometer model incorporates a reverse monte-carlo ray tracing algorithm adapted to meet these user specifications and runs on both unstructured and structured meshes. Verification testing of the model demonstrated the expected order of convergence. Validation testing showed good agreement between calculated fluxes from the model and measured fluxes from radiometers used in propellant fires. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DEAC0494AL85000.


Author(s):  
Yu Zou ◽  
Xiulan Huai ◽  
Fang Xin ◽  
Zhixiong Guo

Molecular dynamics simulations are carried out to study the thermal and mechanical phenomena of ultra-high heat flux conduction induced by ultrafast laser heating in thin Si films. Nanoscale Si films with various depths in heat flux direction are treated as a semi-infinite model for the study of ultrafast heat conduction. A distribution of internal heat source is applied to simulate the absorption of the laser energy in films and the induced temperature distribution. Stress distribution and the evolution of the displacement are calculated. Thermal waves are observed from the development of temperature distribution in the heat flux direction, though the average temperature of the simulated Si films increases monotonically. The average stress shows periodic oscillations. The time development of strain has the same trend as the average stress, and the net heat flux shows the same trend as the stress at different depths of the Si films in the direction of heat flux. This reveals a close relationship between stress and net heat flux in the Si films in the process of ultrafast laser heating.


Sign in / Sign up

Export Citation Format

Share Document