Identification Method of Fluidized Bed’s Gas-solid Two Phase Flow Regime Based on Images Processing and Genetic Neural Network

Author(s):  
Y. L. Zhou ◽  
Z. R. Fan ◽  
Liejin Guo ◽  
D. D. Joseph ◽  
Y. Matsumoto ◽  
...  
1994 ◽  
Vol 72 (3) ◽  
pp. 440-445 ◽  
Author(s):  
Shiqian Cai ◽  
Haluk Toral ◽  
Jianhung Qiu ◽  
John S. Archer

2007 ◽  
Author(s):  
Leonor Hernández ◽  
José Enrique Juliá ◽  
Sergio Chiva ◽  
Sidharth Paranjape ◽  
Mamoru Ishii

2008 ◽  
Vol 238 (1) ◽  
pp. 156-169 ◽  
Author(s):  
J. Enrique Juliá ◽  
Yang Liu ◽  
Sidharth Paranjape ◽  
Mamoru Ishii

Author(s):  
Hiroshi Goda ◽  
Seungjin Kim ◽  
Ye Mi ◽  
Joshua P. Finch ◽  
Mamoru Ishii ◽  
...  

Flow regime identification for an adiabatic vertical co-current downward air-water two-phase flow in the 25.4 mm ID and the 50.8 mm ID round tubes was performed by employing an impedance void meter coupled with the neural network classification approach. This approach minimizes the subjective judgment in determining the flow regimes. The signals obtained by an impedance void meter were applied to train the self-organizing neural network to categorize these impedance signals into a certain number of groups. The characteristic parameters set into the neural network classification included the mean, standard deviation and skewness of impedance signals in the present experiment. The classification categories adopted in the present investigation were four widely accepted flow regimes, viz. bubbly, slug, churn-turbulent, and annular flows. These four flow regimes were recognized based upon the conventional flow visualization approach by a high-speed motion analyzer. The resulting flow regime maps classified by the neural network were compared with the results obtained through the flow visualization method, and consequently the efficiency of the neural network classification for flow regime identification was demonstrated.


Sign in / Sign up

Export Citation Format

Share Document