Worst case analysis for deterministic online algorithm in capacitated lot-sizing problem

2011 ◽  
Author(s):  
Ekaterina Kaganova ◽  
Ilias Kotsireas ◽  
Roderick Melnik ◽  
Brian West
2010 ◽  
Vol 58 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Wilco Van den Heuvel ◽  
Albert P. M. Wagelmans

2018 ◽  
Vol 18 (04) ◽  
pp. 1850012
Author(s):  
YUPENG LI

In this paper, we study the problem of job dispatching and scheduling, where each job consists of a set of tasks. Each task is processed by a set of machines simultaneously. We consider two important performance metrics, the average job completion time (JCT), and the number of deadline-aware jobs that meet their deadlines. The goal is to minimize the former and maximize the latter. We first propose OneJ to minimize the job completion time (JCT) when there is exactly one single job in the system. Then, we propose an online algorithm called MultiJ, taking OneJ as a subroutine, to minimize the average JCT, and prove it has a good competitive ratio. We then derive another online algorithm QuickJ to maximize the number of jobs that can meet their deadlines. We show that QuickJ is competitive via a worst case analysis. We also conjecture that the competitive ratio of QuickJ is likely to be the best one that any deterministic algorithm can achieve. We also shed light on several important merits of MultiJ and QuickJ, such as no severe coordination overhead, scalability, work conservation, and no job starvation.


2019 ◽  
Vol 4 (2) ◽  
pp. 205-214
Author(s):  
Erika Fatma

Lot sizing problem in production planning aims to optimize production costs (processing, setup and holding cost) by fulfilling demand and resources capacity costraint. The Capacitated Lot sizing Problem (CLSP) model aims to balance the setup costs and inventory costs to obtain optimal total costs. The object of this study was a plastic component manufacturing company. This study use CLSP model, considering process costs, holding costs and setup costs, by calculating product cycle and setup time. The constraint of this model is the production time capacity and the storage capacity of the finished product. CLSP can reduce the total production cost by 4.05% and can reduce setup time by 46.75%.  Keyword: Lot size, CLSP, Total production cost.


Author(s):  
Hatim Djelassi ◽  
Stephane Fliscounakis ◽  
Alexander Mitsos ◽  
Patrick Panciatici

Sign in / Sign up

Export Citation Format

Share Document