lot sizing problem
Recently Published Documents


TOTAL DOCUMENTS

562
(FIVE YEARS 91)

H-INDEX

38
(FIVE YEARS 4)

Author(s):  
Franco Quezada ◽  
Céline Gicquel ◽  
Safia Kedad-Sidhoum

We study the uncapacitated lot-sizing problem with uncertain demand and costs. The problem is modeled as a multistage stochastic mixed-integer linear program in which the evolution of the uncertain parameters is represented by a scenario tree. To solve this problem, we propose a new extension of the stochastic dual dynamic integer programming algorithm (SDDiP). This extension aims at being more computationally efficient in the management of the expected cost-to-go functions involved in the model, in particular by reducing their number and by exploiting the current knowledge on the polyhedral structure of the stochastic uncapacitated lot-sizing problem. The algorithm is based on a partial decomposition of the problem into a set of stochastic subproblems, each one involving a subset of nodes forming a subtree of the initial scenario tree. We then introduce a cutting plane–generation procedure that iteratively strengthens the linear relaxation of these subproblems and enables the generation of an additional strengthened Benders’ cut, which improves the convergence of the method. We carry out extensive computational experiments on randomly generated large-size instances. Our numerical results show that the proposed algorithm significantly outperforms the SDDiP algorithm at providing good-quality solutions within the computation time limit. Summary of Contribution: This paper investigates a combinatorial optimization problem called the uncapacitated lot-sizing problem. This problem has been widely studied in the operations research literature as it appears as a core subproblem in many industrial production planning problems. We consider a stochastic extension in which the input parameters are subject to uncertainty and model the resulting stochastic optimization problem as a multistage stochastic integer program. To solve this stochastic problem, we propose a novel extension of the recently published stochastic dual dynamic integer programming (SDDiP) algorithm. The proposed extension relies on two main ideas: the use of a partial decomposition of the scenario tree and the exploitation of existing knowledge on the polyhedral structure of the stochastic uncapacitated lot-sizing problem. We provide the results of extensive computational experiments carried out on large-size randomly generated instances. These results show that the proposed extended algorithm significantly outperforms the SDDiP at providing good-quality solutions for the stochastic uncapacitated lot-sizing problem. Although the paper focuses on a basic lot-sizing problem, the proposed algorithmic framework may be useful to solve more complex practical production planning problems.


Top ◽  
2021 ◽  
Author(s):  
Luis A. Guardiola ◽  
Ana Meca ◽  
Justo Puerto

AbstractWe consider a cooperative game defined by an economic lot-sizing problem with heterogeneous costs over a finite time horizon, in which each firm faces demand for a single product in each period and coalitions can pool orders. The model of cooperation works as follows: ordering channels and holding and backlogging technologies are shared among the members of the coalitions. This implies that each firm uses the best ordering channel and holding technology provided by the participants in the consortium. That is, they produce, hold inventory, pay backlogged demand and make orders at the minimum cost of the coalition members. Thus, firms aim at satisfying their demand over the planing horizon with minimal operation cost. Our contribution is to show that there exist fair allocations of the overall operation cost among the firms so that no group of agents profit from leaving the consortium. Then we propose a parametric family of cost allocations and provide sufficient conditions for this to be a stable family against coalitional defections of firms. Finally, we focus on those periods of the time horizon that are consolidated and we analyze their effect on the stability of cost allocations.


2021 ◽  
Author(s):  
Paula Metzker ◽  
Simon Thevenin ◽  
Yossiri Adulyasak ◽  
Alexandre Dolgui

2021 ◽  
Author(s):  
Mehdi Charles ◽  
Stephane Dauzere-Peres ◽  
Safia Kedad-Sidhoum ◽  
Issam Mazhoud

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Masoud Rabbani ◽  
Soroush Aghamohamadi Bosjin ◽  
Neda Manavizadeh ◽  
Hamed Farrokhi-Asl

Purpose This paper aims to present a novel bi-objective mathematical model for a production-inventory system under uncertainty. Design/methodology/approach This paper addresses agile and lean manufacturing concepts alongside with green production methods to design an integrated capacitated lot sizing problem (CLSP). From a methodological perspective, the problem is solved in three phases. In the first step, an FM/M/C queuing system is used to minimize the number of customers waited to receive their orders. In the second step, an effective approach is applied to deal with the fuzzy bi-objective model and finally, a hybrid metaheuristic algorithm is used to solve the problem. Findings Some numerical test problems and sensitivity analyzes are conducted to measure the efficiency of the proposed model and the solution method. The results validate the model and the performance of the solution method compared to Gams results in small size test problems and prove the superiority of the hybrid algorithm in comparison with the other well-known metaheuristic algorithms in large size test problems. Originality/value This paper presents a novel bi-objective mathematical model for a CLSP under uncertainty. The proposed model is conducted on a practical case and several sensitivity analysis are conducted to assess the behavior of the model. Using a queue system, this problem aims to reduce the items waited in the queue to receive service. Two objective functions are considered to maximize the profit and minimize the negative environmental effects. In this regard, the second objective function aims to reduce the amount of emitted carbon.


Author(s):  
Ashwin Arulselvan ◽  
Kerem Akartunalı ◽  
Wilco van den Heuvel

AbstractIn a single item dynamic lot-sizing problem, we are given a time horizon and demand for a single item in every time period. The problem seeks a solution that determines how much to produce and carry at each time period, so that we will incur the least amount of production and inventory cost. When the remanufacturing option is included, the input comprises of number of returned products at each time period that can be potentially remanufactured to satisfy the demands, where remanufacturing and inventory costs are applicable. For this problem, we first show that it cannot have a fully polynomial time approximation scheme. We then provide a polynomial time algorithm, when we make certain realistic assumptions on the cost structure.


Sign in / Sign up

Export Citation Format

Share Document