scholarly journals Erratum: Scaled atomic number expansion of Hartree–Fock energies for atomic ten‐electron systems [J. Chem. Phys. 75, 3454 (1981)]

1983 ◽  
Vol 78 (9) ◽  
pp. 5846-5846
Author(s):  
Keith McDowell
2018 ◽  
Vol 17 (05) ◽  
pp. 1850037 ◽  
Author(s):  
Oinam Romesh Meitei ◽  
Andreas Heßelmann

Nuclear energy gradients for the incremental molecular fragmentation (IMF) method presented in our previous work [Meitei OR, Heßelmann A, Molecular energies from an incremental fragmentation method, J Chem Phys 144(8):084109, 2016] have been derived. Using the second-order Møller–Plesset perturbation theory method to describe the bonded and nonbonded energy and gradient contributions and the uncorrelated Hartree–Fock method to describe the correction increment, it is shown that the IMF gradient can be easily computed by a sum of the underlying individual derivatives of the energy contributions. The performance of the method has been compared against the supermolecular method by optimizing the structures of a range of polyglycine molecules with up to 36 glycine residues in the chain. It is shown that with a sensible set of parameters used in the fragmentation the supermolecular structures can be fairly well reproduced. In a few cases the optimization with the IMF method leads to structures that differ from the supermolecular ones. It was found, however, that these are more stable geometries also on the supermolecular potential energy surface.


2019 ◽  
Author(s):  
Jacob Nite ◽  
Carlos A. Jimenez-Hoyos

Quantum chemistry methods that describe excited states on the same footing as the ground state are generally scarce. In previous work, Gill et al. (J. Phys. Chem. A 112, 13164 (2008)) and later Sundstrom and Head-Gordon (J. Chem. Phys. 140, 114103 (2014)) considered excited states resulting from a non-orthogonal configuration interaction (NOCI) on stationary solutions of the Hartree–Fock equations. We build upon those contributions and present the state-averaged resonating Hartree–Fock (sa-ResHF) method, which differs from NOCI in that spin-projection and orbital relaxation effects are incorporated from the onset. Our results in a set of small molecules (alanine, formaldehyde, acetaldehyde, acetone, formamide, and ethylene) suggest that sa-ResHF excitation energies are a notable improvement over configuration interaction singles (CIS), at a mean-field computational cost. The orbital relaxation in sa-ResHF, in the presence of a spin-projection operator, generally results in excitation energies that are closer to the experimental values than the corresponding NOCI ones.


2019 ◽  
Author(s):  
Jacob Nite ◽  
Carlos A. Jimenez-Hoyos

Quantum chemistry methods that describe excited states on the same footing as the ground state are generally scarce. In previous work, Gill et al. (J. Phys. Chem. A 112, 13164 (2008)) and later Sundstrom and Head-Gordon (J. Chem. Phys. 140, 114103 (2014)) considered excited states resulting from a non-orthogonal configuration interaction (NOCI) on stationary solutions of the Hartree–Fock equations. We build upon those contributions and present the state-averaged resonating Hartree–Fock (sa-ResHF) method, which differs from NOCI in that spin-projection and orbital relaxation effects are incorporated from the onset. Our results in a set of small molecules (alanine, formaldehyde, acetaldehyde, acetone, formamide, and ethylene) suggest that sa-ResHF excitation energies are a notable improvement over configuration interaction singles (CIS), at a mean-field computational cost. The orbital relaxation in sa-ResHF, in the presence of a spin-projection operator, generally results in excitation energies that are closer to the experimental values than the corresponding NOCI ones.


2015 ◽  
Vol 12 (1) ◽  
pp. 204-209
Author(s):  
Baghdad Science Journal

The division partitioning technique has been used to analyze the four electron systems into six-pairs electronic wave functions for ( for the Beryllium atom in its excited state (1s2 2s 3s ) and like ions ( B+1 ,C+2 ) using Hartree-Fock wave functions . The aim of this work is to study atomic scattering form factor f(s) for and nuclear magnetic shielding constant. The results are obtained numerically by using the computer software (Mathcad).


Sign in / Sign up

Export Citation Format

Share Document