scholarly journals Low-Cost Molecular Excited States from a State-Averaged Resonating Hartree-Fock Approach

2019 ◽  
Author(s):  
Jacob Nite ◽  
Carlos A. Jimenez-Hoyos

Quantum chemistry methods that describe excited states on the same footing as the ground state are generally scarce. In previous work, Gill et al. (J. Phys. Chem. A 112, 13164 (2008)) and later Sundstrom and Head-Gordon (J. Chem. Phys. 140, 114103 (2014)) considered excited states resulting from a non-orthogonal configuration interaction (NOCI) on stationary solutions of the Hartree–Fock equations. We build upon those contributions and present the state-averaged resonating Hartree–Fock (sa-ResHF) method, which differs from NOCI in that spin-projection and orbital relaxation effects are incorporated from the onset. Our results in a set of small molecules (alanine, formaldehyde, acetaldehyde, acetone, formamide, and ethylene) suggest that sa-ResHF excitation energies are a notable improvement over configuration interaction singles (CIS), at a mean-field computational cost. The orbital relaxation in sa-ResHF, in the presence of a spin-projection operator, generally results in excitation energies that are closer to the experimental values than the corresponding NOCI ones.

2019 ◽  
Author(s):  
Jacob Nite ◽  
Carlos A. Jimenez-Hoyos

Quantum chemistry methods that describe excited states on the same footing as the ground state are generally scarce. In previous work, Gill et al. (J. Phys. Chem. A 112, 13164 (2008)) and later Sundstrom and Head-Gordon (J. Chem. Phys. 140, 114103 (2014)) considered excited states resulting from a non-orthogonal configuration interaction (NOCI) on stationary solutions of the Hartree–Fock equations. We build upon those contributions and present the state-averaged resonating Hartree–Fock (sa-ResHF) method, which differs from NOCI in that spin-projection and orbital relaxation effects are incorporated from the onset. Our results in a set of small molecules (alanine, formaldehyde, acetaldehyde, acetone, formamide, and ethylene) suggest that sa-ResHF excitation energies are a notable improvement over configuration interaction singles (CIS), at a mean-field computational cost. The orbital relaxation in sa-ResHF, in the presence of a spin-projection operator, generally results in excitation energies that are closer to the experimental values than the corresponding NOCI ones.


2019 ◽  
Author(s):  
Emmanuel Giner ◽  
Anthony Scemama ◽  
Julien Toulouse ◽  
Pierre-Francois Loos

<p>By combining extrapolated selected configuration interaction (sCI) energies obtained with the CIPSI (Configuration Interaction using a Perturbative Selection made Iteratively) algorithm with the recently proposed short-range density-functional correction for basis-set incompleteness [Giner et al., J. Chem. Phys. 2018, 149, 194301], we show that one can get chemically accurate vertical and adiabatic excitation energies with, typically, augmented double-ζ basis sets. We illustrate the present approach on various types of excited states (valence, Rydberg, and double excitations) in several small organic molecules (methylene, water, ammonia, carbon dimer and ethylene). The present study clearly evidences that special care has to be taken with very diffuse excited states where the present correction does not catch the radial incompleteness of the one-electron basis set.</p>


2019 ◽  
Author(s):  
Emmanuel Giner ◽  
Anthony Scemama ◽  
Julien Toulouse ◽  
Pierre-Francois Loos

<p>By combining extrapolated selected configuration interaction (sCI) energies obtained with the CIPSI (Configuration Interaction using a Perturbative Selection made Iteratively) algorithm with the recently proposed short-range density-functional correction for basis-set incompleteness [Giner et al., J. Chem. Phys. 2018, 149, 194301], we show that one can get chemically accurate vertical and adiabatic excitation energies with, typically, augmented double-ζ basis sets. We illustrate the present approach on various types of excited states (valence, Rydberg, and double excitations) in several small organic molecules (methylene, water, ammonia, carbon dimer and ethylene). The present study clearly evidences that special care has to be taken with very diffuse excited states where the present correction does not catch the radial incompleteness of the one-electron basis set.</p>


1980 ◽  
Vol 58 (16) ◽  
pp. 1687-1690 ◽  
Author(s):  
Delano P. Chong

The excitation energies calculated by the HAM/3 procedure for ΠΠ* transitions in linear molecules can be internally inconsistent by as much as ± 0.6 eV. In the recent study by Åsbrink etal., the problem was avoided by adopting Recknagel's expressions and requiring the proper average ΠΠ* excitation energy. In this paper, we trace the small inconsistency back to its origin in HAM/3 theory and derive the analytical expression for the energy correction as well as Recknagel's formulas. Numerical examples studied include all seven linear molecules investigated by Åsbrink etal. The explicit expression for the correction enables us to perform meaningful configuration-interaction calculations on the excited states, as illustrated by the carbon suboxide molecule.


2007 ◽  
Vol 3 (1) ◽  
pp. 65-69 ◽  
Author(s):  
V.N. Glushkov

A singe Slater determinant consisting of restricted and unrestricted, in spins, parts is proposed to construct a reference configuration for singlet excited states having the same symmetry as the ground one. A partially restricted Hartree-Fock approach is developed to derive amended equations determining the spatial molecular orbitals for singlet excited states. They present the natural base to describe the electron correlation in excited states using the wellestablished spin-annihilated perturbation theories. The efficiency of the proposed method is demonstrated by calculations of electronic excitation energies for the Be atom and LiH molecule.


1990 ◽  
Vol 68 (6) ◽  
pp. 499-507 ◽  
Author(s):  
S. P. Karna ◽  
P. J. Bruna ◽  
F. Grein

Ab initio configuration interaction (CI) studies were performed on low-lying linear and nonlinear states of methinophosphide (HCP), using large basis sets with polarization and s, p Rydberg functions, and extensive multireference CI wave functions. Potential curves for linear states of HCP as functions of RCP and RCH and for nonlinear states as functions of αHCP were obtained, from which spectroscopic constants Te, Re, and ωe were evaluated. For the X1Σ+ ground state, the energy of dissociation into H + CP and the dipole moment were also calculated. The assignment of states based on the observed spectrum had to be revised in several instances. The ã state remained 13Σ+ (or 13A′), but the [Formula: see text] state became 13A″, the [Formula: see text] state, 13Δ, the à and [Formula: see text] states remained 11A″ and 21A′, respectively, [Formula: see text] was not seen as a seperate state, and [Formula: see text] became 13Σ−. In the energy range from 0 to 8 eV, 22 linear and 11 nonlinear stable states were found. Nonlinear states were stabilized for excitations from π(9a′, 2a″) into the in-plane component of π*, 10a′. Several doubly excited states of the type π2 → π*2 were bound, lying at relatively small excitation energies.


Author(s):  
James S. Sims

In a previous work Sims and Hagstrom [J Chem Phys 140,224312(2014)] reported Hylleraas-configuration interaction (Hy-CI) method variational calculations for the 1S ground states of the beryllium isoelectronic sequence with an estimated accuracy of 10 to 20 nanohartrees (nHa). In this work the calculations have been extended to the five higher states of the neutral beryllium atom, 3 1S, 4 1S, 5 1S, 6 1S, and 7 1S. The best non-relativistic energies obtained for these states are -14.4182 4034 6, -14.3700 8789 0, -14.3515 1167 6, -14.3424 0357 8, and -14.3372 6649 96 Ha, respectively. The 6 1S result is superior to the known reference energy for that state, while for the 7 1S state there is no other comparable calculation.


Sign in / Sign up

Export Citation Format

Share Document