Rotational spectra, structure, Kr‐83 nuclear quadrupole coupling constant, and the dipole moment of the Kr‐benzene dimer

1992 ◽  
Vol 97 (8) ◽  
pp. 5335-5340 ◽  
Author(s):  
T. D. Klots ◽  
T. Emilsson ◽  
H. S. Gutowsky
1977 ◽  
Vol 32 (2) ◽  
pp. 152-155 ◽  
Author(s):  
J. Wiese ◽  
L. Engelbrecht ◽  
H. Dreizler

Results of a microwave investigation of the molecules 2-Cyanothiophene and 2-Cyanofurane are reported. The microwave spectrum of 2-Cyanothiophene was examined in the frequency range of 13 -40 GHz mainly to get a more accurate rotational constant A from the assignment of μb-btransitions. From the resolved hyperfine structure due to nuclear quadrupole coupling of the 14N-nucleus the quadrupole coupling constant X+=Xbb + Xcc was determined for 2-Cyanothiophene. No information for X- was available from the measured transitions.From Stark effect studies the dipole moments were determined for both molecules. The nuclear quadrupole coupling as a perturbation of the second order Stark effect was included in the Stark effect analysis


1992 ◽  
Vol 47 (1-2) ◽  
pp. 367-370 ◽  
Author(s):  
A. C. Legon ◽  
P. W. Fowler

AbstractThe 14N-nuclear quadrupole coupling constants χaa(14N<2>) and χaa(14N(1)) for the ground-states of the dimers 14N(2)14N(1) • • • HCCH and 14N(2)14N(1) • • • HC15N have been corrected for zero-point effects and for the electrical effects of the subunit HX to give two estimatesχ(14N) = -5.01 (13) and - 5.07 (8) MHz, respectively, for the coupling constant of the isolated 14N2 molecule


Sign in / Sign up

Export Citation Format

Share Document