Fundamental solution of the tempered fractional diffusion equation

2015 ◽  
Vol 56 (11) ◽  
pp. 113504 ◽  
Author(s):  
André Liemert ◽  
Alwin Kienle
Author(s):  
D. K. Durdiev ◽  

We study the inverse problem of determining the time depending reaction diffu- sion coefficient in the Cauchy problem for the time-fractional diffusion equation by a single observation at the point x = 0 of the diffusion process. To represent the solution of the direct problem, the fundamental solution of the time-fractional diffusion equation is used and properties of this solution are investigated. The fundamental solution contains the Fox’s H− functions widely used in fractional calculus. In particular, using estimates of the fundamental solution and its derivatives, an estimate for the solution of the direct problem is obtained in terms of the norm of the unknown coefficient which will be used in study inverse problem. The inverse problem is reduced to the equivalent integral equation. For solving this equation the contracted mapping principle is applied. The local existence and global uniqueness results are proven. Also the stability estimate is obtained.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Abderrazak Nabti ◽  
Ahmed Alsaedi ◽  
Mokhtar Kirane ◽  
Bashir Ahmad

Abstract We prove the nonexistence of solutions of the fractional diffusion equation with time-space nonlocal source $$\begin{aligned} u_{t} + (-\Delta )^{\frac{\beta }{2}} u =\bigl(1+ \vert x \vert \bigr)^{ \gamma } \int _{0}^{t} (t-s)^{\alpha -1} \vert u \vert ^{p} \bigl\Vert \nu ^{ \frac{1}{q}}(x) u \bigr\Vert _{q}^{r} \,ds \end{aligned}$$ u t + ( − Δ ) β 2 u = ( 1 + | x | ) γ ∫ 0 t ( t − s ) α − 1 | u | p ∥ ν 1 q ( x ) u ∥ q r d s for $(x,t) \in \mathbb{R}^{N}\times (0,\infty )$ ( x , t ) ∈ R N × ( 0 , ∞ ) with initial data $u(x,0)=u_{0}(x) \in L^{1}_{\mathrm{loc}}(\mathbb{R}^{N})$ u ( x , 0 ) = u 0 ( x ) ∈ L loc 1 ( R N ) , where $p,q,r>1$ p , q , r > 1 , $q(p+r)>q+r$ q ( p + r ) > q + r , $0<\gamma \leq 2 $ 0 < γ ≤ 2 , $0<\alpha <1$ 0 < α < 1 , $0<\beta \leq 2$ 0 < β ≤ 2 , $(-\Delta )^{\frac{\beta }{2}}$ ( − Δ ) β 2 stands for the fractional Laplacian operator of order β, the weight function $\nu (x)$ ν ( x ) is positive and singular at the origin, and $\Vert \cdot \Vert _{q}$ ∥ ⋅ ∥ q is the norm of $L^{q}$ L q space.


Sign in / Sign up

Export Citation Format

Share Document