Communications on Applied Mathematics and Computation
Latest Publications


TOTAL DOCUMENTS

163
(FIVE YEARS 163)

H-INDEX

4
(FIVE YEARS 4)

Published By Springer-Verlag

2661-8893, 2096-6385

Author(s):  
Poorvi Shukla ◽  
J. J. W. van der Vegt

AbstractA new higher-order accurate space-time discontinuous Galerkin (DG) method using the interior penalty flux and discontinuous basis functions, both in space and in time, is presented and fully analyzed for the second-order scalar wave equation. Special attention is given to the definition of the numerical fluxes since they are crucial for the stability and accuracy of the space-time DG method. The theoretical analysis shows that the DG discretization is stable and converges in a DG-norm on general unstructured and locally refined meshes, including local refinement in time. The space-time interior penalty DG discretization does not have a CFL-type restriction for stability. Optimal order of accuracy is obtained in the DG-norm if the mesh size h and the time step $$\Delta t$$ Δ t satisfy $$h\cong C\Delta t$$ h ≅ C Δ t , with C a positive constant. The optimal order of accuracy of the space-time DG discretization in the DG-norm is confirmed by calculations on several model problems. These calculations also show that for pth-order tensor product basis functions the convergence rate in the $$L^\infty$$ L ∞ and $$L^2$$ L 2 -norms is order $$p+1$$ p + 1 for polynomial orders $$p=1$$ p = 1 and $$p=3$$ p = 3 and order p for polynomial order $$p=2$$ p = 2 .


Author(s):  
Jean-Luc Guermond ◽  
Bojan Popov ◽  
Laura Saavedra

AbstractAn invariant domain preserving arbitrary Lagrangian-Eulerian method for solving non-linear hyperbolic systems is developed. The numerical scheme is explicit in time and the approximation in space is done with continuous finite elements. The method is made invariant domain preserving for the Euler equations using convex limiting and is tested on various benchmarks.


Author(s):  
Dinshaw S. Balsara ◽  
Roger Käppeli ◽  
Walter Boscheri ◽  
Michael Dumbser

AbstractSeveral important PDE systems, like magnetohydrodynamics and computational electrodynamics, are known to support involutions where the divergence of a vector field evolves in divergence-free or divergence constraint-preserving fashion. Recently, new classes of PDE systems have emerged for hyperelasticity, compressible multiphase flows, so-called first-order reductions of the Einstein field equations, or a novel first-order hyperbolic reformulation of Schrödinger’s equation, to name a few, where the involution in the PDE supports curl-free or curl constraint-preserving evolution of a vector field. We study the problem of curl constraint-preserving reconstruction as it pertains to the design of mimetic finite volume (FV) WENO-like schemes for PDEs that support a curl-preserving involution. (Some insights into discontinuous Galerkin (DG) schemes are also drawn, though that is not the prime focus of this paper.) This is done for two- and three-dimensional structured mesh problems where we deliver closed form expressions for the reconstruction. The importance of multidimensional Riemann solvers in facilitating the design of such schemes is also documented. In two dimensions, a von Neumann analysis of structure-preserving WENO-like schemes that mimetically satisfy the curl constraints, is also presented. It shows the tremendous value of higher order WENO-like schemes in minimizing dissipation and dispersion for this class of problems. Numerical results are also presented to show that the edge-centered curl-preserving (ECCP) schemes meet their design accuracy. This paper is the first paper that invents non-linearly hybridized curl-preserving reconstruction and integrates it with higher order Godunov philosophy. By its very design, this paper is, therefore, intended to be forward-looking and to set the stage for future work on curl involution-constrained PDEs.


Author(s):  
Adrien Drouillet ◽  
Romain Le Tellier ◽  
Raphaël Loubère ◽  
Mathieu Peybernes ◽  
Louis Viot

Author(s):  
Hendrik Ranocha ◽  
Lisandro Dalcin ◽  
Matteo Parsani ◽  
David I. Ketcheson

AbstractWe develop error-control based time integration algorithms for compressible fluid dynamics (CFD) applications and show that they are efficient and robust in both the accuracy-limited and stability-limited regime. Focusing on discontinuous spectral element semidiscretizations, we design new controllers for existing methods and for some new embedded Runge-Kutta pairs. We demonstrate the importance of choosing adequate controller parameters and provide a means to obtain these in practice. We compare a wide range of error-control-based methods, along with the common approach in which step size control is based on the Courant-Friedrichs-Lewy (CFL) number. The optimized methods give improved performance and naturally adopt a step size close to the maximum stable CFL number at loose tolerances, while additionally providing control of the temporal error at tighter tolerances. The numerical examples include challenging industrial CFD applications.


Sign in / Sign up

Export Citation Format

Share Document