nonlocal source
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 12)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Xiaorong Zhang ◽  
Zhoujin Cui

This paper deals with a class of quasilinear parabolic equation with power nonlinearity and nonlocal source under homogeneous Dirichlet boundary condition in a smooth bounded domain; we obtain the blow-up condition and blow-up results under the condition of nonpositive initial energy.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Abderrazak Nabti ◽  
Ahmed Alsaedi ◽  
Mokhtar Kirane ◽  
Bashir Ahmad

Abstract We prove the nonexistence of solutions of the fractional diffusion equation with time-space nonlocal source $$\begin{aligned} u_{t} + (-\Delta )^{\frac{\beta }{2}} u =\bigl(1+ \vert x \vert \bigr)^{ \gamma } \int _{0}^{t} (t-s)^{\alpha -1} \vert u \vert ^{p} \bigl\Vert \nu ^{ \frac{1}{q}}(x) u \bigr\Vert _{q}^{r} \,ds \end{aligned}$$ u t + ( − Δ ) β 2 u = ( 1 + | x | ) γ ∫ 0 t ( t − s ) α − 1 | u | p ∥ ν 1 q ( x ) u ∥ q r d s for $(x,t) \in \mathbb{R}^{N}\times (0,\infty )$ ( x , t ) ∈ R N × ( 0 , ∞ ) with initial data $u(x,0)=u_{0}(x) \in L^{1}_{\mathrm{loc}}(\mathbb{R}^{N})$ u ( x , 0 ) = u 0 ( x ) ∈ L loc 1 ( R N ) , where $p,q,r>1$ p , q , r > 1 , $q(p+r)>q+r$ q ( p + r ) > q + r , $0<\gamma \leq 2 $ 0 < γ ≤ 2 , $0<\alpha <1$ 0 < α < 1 , $0<\beta \leq 2$ 0 < β ≤ 2 , $(-\Delta )^{\frac{\beta }{2}}$ ( − Δ ) β 2 stands for the fractional Laplacian operator of order β, the weight function $\nu (x)$ ν ( x ) is positive and singular at the origin, and $\Vert \cdot \Vert _{q}$ ∥ ⋅ ∥ q is the norm of $L^{q}$ L q space.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Chunxiao Yang ◽  
Linghua Kong ◽  
Yingxue Wu ◽  
Qing Tian

Abstract This paper considers the Cauchy problem for fast diffusion equation with nonlocal source $u_{t}=\Delta u^{m}+ (\int_{\mathbb{R}^{n}}u^{q}(x,t)\,dx )^{\frac{p-1}{q}}u^{r+1}$ u t = Δ u m + ( ∫ R n u q ( x , t ) d x ) p − 1 q u r + 1 , which was raised in [Galaktionov et al. in Nonlinear Anal. 34:1005–1027, 1998]. We give the critical Fujita exponent $p_{c}=m+\frac{2q-n(1-m)-nqr}{n(q-1)}$ p c = m + 2 q − n ( 1 − m ) − n q r n ( q − 1 ) , namely, any solution of the problem blows up in finite time whenever $1< p\le p_{c}$ 1 < p ≤ p c , and there are both global and non-global solutions if $p>p_{c}$ p > p c .


Sign in / Sign up

Export Citation Format

Share Document