fractional laplacian operator
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 10)

H-INDEX

7
(FIVE YEARS 2)

Author(s):  
Luigi Appolloni ◽  
Giovanni Molica Bisci ◽  
Simone Secchi

AbstractWe study a nonlocal parametric problem driven by the fractional Laplacian operator combined with a Kirchhoff-type coefficient and involving a critical nonlinearity term in the Sobolev embedding sense. Our approach is of variational and topological nature. The obtained results can be viewed as a nontrivial extension to the nonlocal setting of some recent contributions already present in the literature.


2021 ◽  
Vol 5 (3) ◽  
pp. 75
Author(s):  
Gábor Maros ◽  
Ferenc Izsák

The numerical solution of fractional-order elliptic problems is investigated in bounded domains. According to real-life situations, we assumed inhomogeneous boundary terms, while the underlying equations contain the full-space fractional Laplacian operator. The basis of the convergence analysis for a lower-order boundary element approximation is the theory for the corresponding continuous problem. In particular, we need continuity results for Riesz potentials and the fractional-order extension of the theory for boundary integral equations with the Laplacian operator. Accordingly, the convergence is stated in fractional-order Sobolev norms. The results were confirmed in a numerical experiment.


2021 ◽  
Vol 10 (1) ◽  
pp. 1328-1355
Author(s):  
Yuxi Meng ◽  
Xinrui Zhang ◽  
Xiaoming He

Abstract In this paper, we study the fractional Schrödinger-Poisson system ( − Δ ) s u + V ( x ) u + K ( x ) ϕ | u | q − 2 u = h ( x ) f ( u ) + | u | 2 s ∗ − 2 u , in   R 3 , ( − Δ ) t ϕ = K ( x ) | u | q , in   R 3 , $$\begin{array}{} \displaystyle \left\{ \begin{array}{ll} (-{\it\Delta})^{s}u+V(x)u+ K(x) \phi|u|^{q-2}u=h(x)f(u)+|u|^{2^{\ast}_{s}-2}u,&\mbox{in}~ {\mathbb R^{3}},\\ (-{\it\Delta})^{t}\phi=K(x)|u|^{q},&\mbox{in}~ {\mathbb R^{3}}, \end{array}\right. \end{array}$$ where s, t ∈ (0, 1), 3 < 4s < 3 + 2t, q ∈ (1, 2 s ∗ $\begin{array}{} \displaystyle 2^*_s \end{array}$ /2) are real numbers, (−Δ) s stands for the fractional Laplacian operator, 2 s ∗ := 6 3 − 2 s $\begin{array}{} \displaystyle 2^{*}_{s}:=\frac{6}{3-2s} \end{array}$ is the fractional critical Sobolev exponent, K, V and h are non-negative potentials and V, h may be vanish at infinity. f is a C 1-function satisfying suitable growth assumptions. We show that the above fractional Schrödinger-Poisson system has a positive and a sign-changing least energy solution via variational methods.


Author(s):  
Chunhua Wang ◽  
Suting Wei

This paper deals with the following non-linear equation with a fractional Laplacian operator and almost critical exponents: \[ (-\Delta)^{s} u=K(|y'|,y'')u^{({N+2s})/(N-2s)\pm\epsilon},\quad u > 0,\quad u\in D^{1,s}(\mathbb{R}^{N}), \] where N ⩾ 4, 0 < s < 1, (y′, y″) ∈ ℝ2 × ℝN−2, ε > 0 is a small parameter and K(y) is non-negative and bounded. Under some suitable assumptions of the potential function K(r, y″), we will use the finite-dimensional reduction method and some local Pohozaev identities to prove that the above problem has a large number of bubble solutions. The concentration points of the bubble solutions include a saddle point of K(y). Moreover, the functional energies of these solutions are in the order $\epsilon ^{-(({N-2s-2})/({(N-2s)^2})}$ .


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Abderrazak Nabti ◽  
Ahmed Alsaedi ◽  
Mokhtar Kirane ◽  
Bashir Ahmad

Abstract We prove the nonexistence of solutions of the fractional diffusion equation with time-space nonlocal source $$\begin{aligned} u_{t} + (-\Delta )^{\frac{\beta }{2}} u =\bigl(1+ \vert x \vert \bigr)^{ \gamma } \int _{0}^{t} (t-s)^{\alpha -1} \vert u \vert ^{p} \bigl\Vert \nu ^{ \frac{1}{q}}(x) u \bigr\Vert _{q}^{r} \,ds \end{aligned}$$ u t + ( − Δ ) β 2 u = ( 1 + | x | ) γ ∫ 0 t ( t − s ) α − 1 | u | p ∥ ν 1 q ( x ) u ∥ q r d s for $(x,t) \in \mathbb{R}^{N}\times (0,\infty )$ ( x , t ) ∈ R N × ( 0 , ∞ ) with initial data $u(x,0)=u_{0}(x) \in L^{1}_{\mathrm{loc}}(\mathbb{R}^{N})$ u ( x , 0 ) = u 0 ( x ) ∈ L loc 1 ( R N ) , where $p,q,r>1$ p , q , r > 1 , $q(p+r)>q+r$ q ( p + r ) > q + r , $0<\gamma \leq 2 $ 0 < γ ≤ 2 , $0<\alpha <1$ 0 < α < 1 , $0<\beta \leq 2$ 0 < β ≤ 2 , $(-\Delta )^{\frac{\beta }{2}}$ ( − Δ ) β 2 stands for the fractional Laplacian operator of order β, the weight function $\nu (x)$ ν ( x ) is positive and singular at the origin, and $\Vert \cdot \Vert _{q}$ ∥ ⋅ ∥ q is the norm of $L^{q}$ L q space.


2020 ◽  
pp. 1-23
Author(s):  
Claudia Anedda ◽  
Fabrizio Cuccu ◽  
Silvia Frassu

Abstract Let $\Omega \subset \mathbb {R}^N$ , $N\geq 2$ , be an open bounded connected set. We consider the fractional weighted eigenvalue problem $(-\Delta )^s u =\lambda \rho u$ in $\Omega $ with homogeneous Dirichlet boundary condition, where $(-\Delta )^s$ , $s\in (0,1)$ , is the fractional Laplacian operator, $\lambda \in \mathbb {R}$ and $ \rho \in L^\infty (\Omega )$ . We study weak* continuity, convexity and Gâteaux differentiability of the map $\rho \mapsto 1/\lambda _1(\rho )$ , where $\lambda _1(\rho )$ is the first positive eigenvalue. Moreover, denoting by $\mathcal {G}(\rho _0)$ the class of rearrangements of $\rho _0$ , we prove the existence of a minimizer of $\lambda _1(\rho )$ when $\rho $ varies on $\mathcal {G}(\rho _0)$ . Finally, we show that, if $\Omega $ is Steiner symmetric, then every minimizer shares the same symmetry.


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 320 ◽  
Author(s):  
Chenkuan Li ◽  
Changpin Li ◽  
Thomas Humphries ◽  
Hunter Plowman

The fractional Laplacian, also known as the Riesz fractional derivative operator, describes an unusual diffusion process due to random displacements executed by jumpers that are able to walk to neighbouring or nearby sites, as well as perform excursions to remote sites by way of Lévy flights. The fractional Laplacian has many applications in the boundary behaviours of solutions to differential equations. The goal of this paper is to investigate the half-order Laplacian operator ( − Δ ) 1 2 in the distributional sense, based on the generalized convolution and Temple’s delta sequence. Several interesting examples related to the fractional Laplacian operator of order 1 / 2 are presented with applications to differential equations, some of which cannot be obtained in the classical sense by the standard definition of the fractional Laplacian via Fourier transform.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Dongsun Lee ◽  
Seunggyu Lee

We present the image segmentation model using the modified Allen–Cahn equation with a fractional Laplacian. The motion of the interface for the classical Allen–Cahn equation is known as the mean curvature flows, whereas its dynamics is changed to the macroscopic limit of Lévy process by replacing the Laplacian operator with the fractional one. To numerical implementation, we prove the unconditionally unique solvability and energy stability of the numerical scheme for the proposed model. The effect of a fractional Laplacian operator in our own and in the Allen–Cahn equation is checked by numerical simulations. Finally, we give some image segmentation results with different fractional order, including the standard Laplacian operator.


Sign in / Sign up

Export Citation Format

Share Document