A new discretization for the polarizable continuum model within the domain decomposition paradigm

2016 ◽  
Vol 144 (5) ◽  
pp. 054101 ◽  
Author(s):  
Benjamin Stamm ◽  
Eric Cancès ◽  
Filippo Lipparini ◽  
Yvon Maday
2018 ◽  
Vol 28 (07) ◽  
pp. 1233-1266 ◽  
Author(s):  
Chaoyu Quan ◽  
Benjamin Stamm ◽  
Yvon Maday

In this paper, an efficient solver for the polarizable continuum model in quantum chemistry is developed which takes the solvent excluded surface (the smooth molecular surface) as the solute–solvent boundary. This model requires to solve a generalized Poisson (GP) equation defined in [Formula: see text] with a space-dependent dielectric permittivity function. First, the original GP-equation is transformed into a system of two coupled equations defined in a bounded domain. Then, this domain is decomposed into overlapping balls and the Schwarz domain decomposition method is used. This method involves a direct Laplace solver and an efficient GP-solver to solve the local sub-equations in balls. For each solver, the spherical harmonics are used as basis functions in the angular direction of the spherical coordinate system. A series of numerical experiments are presented to test the performance of this method.


2021 ◽  
Vol 20 (1) ◽  
pp. 59-68
Author(s):  
Zohreh Khanjari ◽  
Bita Mohtat ◽  
Reza Ghiasi ◽  
Hoorieh Djahaniani ◽  
Farahnaz Kargar Behbahani

This research examined the effects of solvent polarity and temperature on the tautomerization of a carbonitrile molecule at CAM-B3LYP/6-311G (d,p) level of theory. The selected solvents were n-hexane, diethyl ether, pyridine, ethanol, methanol, and water. The solvent effects were examined by the self-consistent reaction field theory (SCRF) based on conductor-like polarizable continuum model (CPCM). The solvent effects were explored on the energy barrier, frontier orbitals energies, and HOMO-LUMO gap. Dependencies of thermodynamic parameters (ΔG and ΔH) on the dielectric constants of solvents were also tested. Specifically, the temperature dependencies of the thermodynamics parameters were studied within 100–1000 K range. The rate constant of the tautomerism reaction was computed from 300 to 1200 K, in the gas phase.


2012 ◽  
Vol 11 (02) ◽  
pp. 283-295 ◽  
Author(s):  
BAHRAM GHALAMI-CHOOBAR ◽  
ALI GHIAMI-SHOMAMI ◽  
PARIA NIKPARSA

In this work, calculations of p K b values have been performed for aniline and its substituted derivatives and sulfonamide drugs by using Gaussian 98 software package. Gas-phase energies were calculated with HF /6-31 G ** and B3LYP /6-31 G ** levels of theory. Free energies of solvation have been computed using the polarizable continuum model (PCM), conductor-like polarizable continuum model (CPCM) and the integral equation formalism-polarizable continuum model (IEFPCM) at the same levels which have been used for geometry determination in the gas-phase. The results show that the calculated p K b values using the B3LYP /6-31 G ** are better than those using the corresponding HF /6-31 G **. At first, the correlation equation was found to determine the p K b values of the investigated anilines. Then, this correlation equation was used to calculate the p K b values of the sulfonamide drugs. The results obtained indicate that the PCM model is a suitable solvation model for calculating p K b values in comparison to the other solvation models. For the investigated compounds a good agreement between the experimental and the calculated p K b values was also observed.


Sign in / Sign up

Export Citation Format

Share Document