Generalized special solutions to modified Kompaneets equation

2019 ◽  
Author(s):  
Denisa-Andreea Mihu ◽  
Marina-Aura Dariescu ◽  
Gheorghe Amanoloaei
2021 ◽  
Vol 31 (4) ◽  
Author(s):  
R. Camassa ◽  
G. Falqui ◽  
G. Ortenzi ◽  
M. Pedroni ◽  
T. T. Vu Ho

AbstractThe theory of three-layer density-stratified ideal fluids is examined with a view toward its generalization to the n-layer case. The focus is on structural properties, especially for the case of a rigid upper lid constraint. We show that the long-wave dispersionless limit is a system of quasi-linear equations that do not admit Riemann invariants. We equip the layer-averaged one-dimensional model with a natural Hamiltonian structure, obtained with a suitable reduction process from the continuous density stratification structure of the full two-dimensional equations proposed by Benjamin. For a laterally unbounded fluid between horizontal rigid boundaries, the paradox about the non-conservation of horizontal total momentum is revisited, and it is shown that the pressure imbalances causing it can be intensified by three-layer setups with respect to their two-layer counterparts. The generator of the x-translational symmetry in the n-layer setup is also identified by the appropriate Hamiltonian formalism. The Boussinesq limit and a family of special solutions recently introduced by de Melo Viríssimo and Milewski are also discussed.


1998 ◽  
Vol 13 (16) ◽  
pp. 2857-2874
Author(s):  
IVER H. BREVIK ◽  
HERNÁN OCAMPO ◽  
SERGEI ODINTSOV

We discuss ε-expansion in curved space–time for asymptotically free and asymptotically nonfree theories. The existence of stable and unstable fixed points is investigated for fϕ4 theory and SU(2) gauge theory. It is shown that ε-expansion maybe compatible with aysmptotic freedom on special solutions of the RG equations in a special ase (supersymmetric theory). Using ε-expansion RG technique, the effective Lagrangian for covariantly constant gauge SU(2) field and effective potential for gauged NJL model are found in (4-ε)-dimensional curved space (in linear curvature approximation). The curvature-induced phase transitions from symmetric phase to asymmetric phase (chromomagnetic vacuum and chiral symmetry broken phase, respectively) are discussed for the above two models.


2021 ◽  
Vol 10 (10) ◽  
pp. 843-848
Author(s):  
Shavkat Turdimurotovich Rakhimov ◽  
Isroil Abdigapparugli Alimov ◽  
Abdukarim Abduxalimzoda Abduraximov
Keyword(s):  

Physics ◽  
1936 ◽  
Vol 7 (9) ◽  
pp. 319-324 ◽  
Author(s):  
R. H. Kent
Keyword(s):  

2004 ◽  
Vol 53 (12) ◽  
pp. 4029
Author(s):  
Xue Yun ◽  
Chen Li-Qun ◽  
Liu Yan-Zhu

2021 ◽  
Vol 236 ◽  
pp. 05039
Author(s):  
Wx Zhang

Elastic calculation method is an important research content of computational mechanics. The problems of elasticity include basic equations and boundary conditions. Therefore, the final solution consists of the general solutions of the basic equations and the special solutions satisfying the boundary conditions. Numerical method is often used in practical calculation, but the analytical solution is also an important subject for researchers. In this paper, the basic solution of three-dimensional elastic materials is given by theoretical derivation.


Sign in / Sign up

Export Citation Format

Share Document