Spin-symmetry adaptation to the Monte Carlo correction configuration interaction wave functions

2019 ◽  
Vol 151 (3) ◽  
pp. 034115 ◽  
Author(s):  
Yuhki Ohtsuka
1992 ◽  
Vol 97 (5) ◽  
pp. 3382-3385 ◽  
Author(s):  
J. W. Moskowitz ◽  
K. E. Schmidt
Keyword(s):  

Author(s):  
Kenneth G. Dyall ◽  
Knut Faegri

We now take on the task of developing the theory and methods for a relativistic quantum chemistry. The aim is to arrive at a qualitative as well as a quantitative understanding of the relativistic effects in molecules. We must be able to predict the effects of relativity on the wave functions and electron densities of molecules, and on the molecular properties arising from these. And we must develop methods and algorithms that enable us to calculate the properties and interactions of molecules with an accuracy comparable to that achieved for lighter systems in a nonrelativistic framework. Parts of this development follow fairly straightforwardly from our considerations of the atomic case in part II, but molecular systems represent challenges of their own. This is particularly true for the computational techniques. From the nonrelativistic experience we know that present-day quantum chemistry owes much of its success to the enormous effort that has gone into developing efficient methods and algorithms. This effort has yielded powerful tools, such as the use of basis-set expansions of wave functions, the exploitation of molecular symmetry, the description of correlation effects by calculations beyond the mean-field approximation, and so on. In developing a relativistic quantum chemistry, we must be able to reformulate these techniques in the new framework, or replace them by more suitable and efficient methods. In nonrelativistic theory, spin symmetry provides one of the biggest reductions in computational effort, such as in the powerful and elegant Graphical Unitary Group Approach (GUGA) for configuration interaction (CI) calculations (Shavitt 1988). For relativistic applications, time-reversal symmetry takes the place of spin symmetry, and this chapter is devoted to developing a formalism for efficient incorporation of this symmetry in our theory and methods. Time-reversal symmetry includes the spin symmetry of nonrelativistic systems, but there are significant differences from spin symmetry for systems with a Hamiltonian that is spin-dependent. The development of techniques that incorporate time-reversal symmetry presented here are primarily aimed at four-component calculations, but they are equally applicable to two-component calculations in which the spin-dependent operators are included at the self-consistent field (SCF) stage of a calculation.


Sign in / Sign up

Export Citation Format

Share Document