time reversal
Recently Published Documents


TOTAL DOCUMENTS

5263
(FIVE YEARS 803)

H-INDEX

114
(FIVE YEARS 15)

2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Hojun Lee ◽  
Seokchan Yoon ◽  
Pascal Loohuis ◽  
Jin Hee Hong ◽  
Sungsam Kang ◽  
...  

AbstractDeep-tissue optical imaging suffers from the reduction of resolving power due to tissue-induced optical aberrations and multiple scattering noise. Reflection matrix approaches recording the maps of backscattered waves for all the possible orthogonal input channels have provided formidable solutions for removing severe aberrations and recovering the ideal diffraction-limited spatial resolution without relying on fluorescence labeling and guide stars. However, measuring the full input–output response of the tissue specimen is time-consuming, making the real-time image acquisition difficult. Here, we present the use of a time-reversal matrix, instead of the reflection matrix, for fast high-resolution volumetric imaging of a mouse brain. The time-reversal matrix reduces two-way problem to one-way problem, which effectively relieves the requirement for the coverage of input channels. Using a newly developed aberration correction algorithm designed for the time-reversal matrix, we demonstrated the correction of complex aberrations using as small as 2% of the complete basis while maintaining the image reconstruction fidelity comparable to the fully sampled reflection matrix. Due to nearly 100-fold reduction in the matrix recording time, we could achieve real-time aberration-correction imaging for a field of view of 40 × 40 µm2 (176 × 176 pixels) at a frame rate of 80 Hz. Furthermore, we demonstrated high-throughput volumetric adaptive optical imaging of a mouse brain by recording a volume of 128 × 128 × 125 µm3 (568 × 568 × 125 voxels) in 3.58 s, correcting tissue aberrations at each and every 1 µm depth section, and visualizing myelinated axons with a lateral resolution of 0.45 µm and an axial resolution of 2 µm.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Jackson R. Badger ◽  
Yundi Quan ◽  
Matthew C. Staab ◽  
Shuntaro Sumita ◽  
Antonio Rossi ◽  
...  

AbstractUnconventional superconductors have Cooper pairs with lower symmetries than in conventional superconductors. In most unconventional superconductors, the additional symmetry breaking occurs in relation to typical ingredients such as strongly correlated Fermi liquid phases, magnetic fluctuations, or strong spin-orbit coupling in noncentrosymmetric structures. In this article, we show that the time-reversal symmetry breaking in the superconductor LaNiGa2 is enabled by its previously unknown topological electronic band structure, with Dirac lines and a Dirac loop at the Fermi level. Two symmetry related Dirac points even remain degenerate under spin-orbit coupling. These unique topological features enable an unconventional superconducting gap in which time-reversal symmetry can be broken in the absence of other typical ingredients. Our findings provide a route to identify a new type of unconventional superconductors based on nonsymmorphic symmetries and will enable future discoveries of topological crystalline superconductors.


2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Gyanendra Singh ◽  
Claudio Guarcello ◽  
Edouard Lesne ◽  
Dag Winkler ◽  
Tord Claeson ◽  
...  

AbstractTwo-dimensional SrTiO3-based interfaces stand out among non-centrosymmetric superconductors due to their intricate interplay of gate-tunable Rashba spin-orbit coupling and multi-orbital electronic occupations, whose combination theoretically prefigures various forms of non-standard superconductivity. By employing superconducting transport measurements in nano-devices we present strong experimental indications of unconventional superconductivity in the LaAlO3/SrTiO3 interface. The central observations are the substantial anomalous enhancement of the critical current by small magnetic fields applied perpendicularly to the plane of electron motion, and the asymmetric response with respect to the magnetic field direction. These features cannot be accommodated within a scenario of canonical spin-singlet superconductivity. We demonstrate that the experimental observations can be described by a theoretical model based on the coexistence of Josephson channels with intrinsic phase shifts. Our results exclude a time-reversal symmetry breaking scenario and suggest the presence of anomalous pairing components that are compatible with inversion symmetry breaking and multi-orbital physics.


Author(s):  
Omri Lesser ◽  
Yuval Oreg

Abstract Majorana zero modes in condensed matter systems have been the subject of much interest in recent years. Their non-Abelian exchange statistics, making them a unique state of matter, and their potential applications in topological quantum computation, earned them attention from both theorists and experimentalists. It is generally understood that in order to form Majorana zero modes in quasi-one-dimensional topological insulators, time-reversal symmetry must be broken. The straightforward mechanisms for doing so—applying magnetic fields or coupling to ferromagnets—turned out to have many unwanted side effects, such as degradation of superconductivity and the formation of sub-gap states, which is part of the reason Majorana zero modes have been eluding direct experimental detection for a long time. Here we review several proposal that rely on controlling the phase of the superconducting order parameter, either as the sole mechanism for time-reversal-symmetry breaking, or as an additional handy knob used to reduce the applied magnetic field. These proposals hold practical promise to improve Majorana detection, and they shed light on the physics underlying the formation of the topological superconducting state.


2022 ◽  
Vol 7 (1) ◽  
Author(s):  
S. Reschke ◽  
D. G. Farkas ◽  
A. Strinić ◽  
S. Ghara ◽  
K. Guratinder ◽  
...  

AbstractMagnetoelectric phenomena are intimately linked to relativistic effects and also require the material to break spatial inversion symmetry and time-reversal invariance. Magnetoelectric coupling can substantially affect light–matter interaction and lead to non-reciprocal light propagation. Here, we confirm on a fully experimental basis, without invoking either symmetry-based or material-specific assumptions, that the optical magnetoelectric effect in materials with non-parallel magnetization (M) and electric polarization (P) generates a trilinear term in the refractive index, δn ∝ k ⋅ (P × M), where k is the propagation vector of light. Its sharp magnetoelectric resonances in the terahertz regime, which are simultaneously electric and magnetic dipole active excitations, make Co2Mo3O8 an ideal compound to demonstrate this fundamental relation via independent variation of M, P, and k. Remarkably, the material shows almost perfect one-way transparency in moderate magnetic fields for one of these magnetoelectric resonances.


2022 ◽  
Vol 52 (1) ◽  
Author(s):  
Domenico Napoletani ◽  
Daniele C. Struppa

AbstractWe formalize the notion of isolated objects (units), and we build a consistent theory to describe their evolution and interaction. We further introduce a notion of indistinguishability of distinct spacetime paths of a unit, for which the evolution of the state variables of the unit is the same, and a generalization of the equivalence principle based on indistinguishability. Under a time reversal condition on the whole set of indistinguishable paths of a unit, we show that the quantization of motion of spinless elementary particles in a general potential field can be derived in this framework, in the limiting case of weak fields and low velocities. Extrapolating this approach to include weak relativistic effects, we explore possible experimental consequences. We conclude by suggesting a primitive ontology for the theory of isolated objects.


Sign in / Sign up

Export Citation Format

Share Document