Moyal equation—Wigner distribution functions for anharmonic oscillators

2021 ◽  
Vol 62 (10) ◽  
pp. 102103
Author(s):  
T. T. Truong
Geophysics ◽  
2008 ◽  
Vol 73 (2) ◽  
pp. S47-S61 ◽  
Author(s):  
Paul Sava ◽  
Oleg Poliannikov

The fidelity of depth seismic imaging depends on the accuracy of the velocity models used for wavefield reconstruction. Models can be decomposed in two components, corresponding to large-scale and small-scale variations. In practice, the large-scale velocity model component can be estimated with high accuracy using repeated migration/tomography cycles, but the small-scale component cannot. When the earth has significant small-scale velocity components, wavefield reconstruction does not completely describe the recorded data, and migrated images are perturbed by artifacts. There are two possible ways to address this problem: (1) improve wavefield reconstruction by estimating more accurate velocity models and image using conventional techniques (e.g., wavefield crosscorrelation) or (2) reconstruct wavefields with conventional methods using the known background velocity model but improve the imaging condition to alleviate the artifacts caused by the imprecise reconstruction. Wedescribe the unknown component of the velocity model as a random function with local spatial correlations. Imaging data perturbed by such random variations is characterized by statistical instability, i.e., various wavefield components image at wrong locations that depend on the actual realization of the random model. Statistical stability can be achieved by preprocessing the reconstructed wavefields prior to the imaging condition. We use Wigner distribution functions to attenuate the random noise present in the reconstructed wavefields, parameterized as a function of image coordinates. Wavefield filtering using Wigner distribution functions and conventional imaging can be lumped together into a new form of imaging condition that we call an interferometric imaging condition because of its similarity to concepts from recent work on interferometry. The interferometric imaging condition can be formulated both for zero-offset and for multioffset data, leading to robust, efficient imaging procedures that effectively attenuate imaging artifacts caused by unknown velocity models.


2016 ◽  
Vol 40 ◽  
pp. 1660055
Author(s):  
Asmita Mukherjee ◽  
Sreeraj Nair ◽  
Vikash Kumar Ojha

Wigner distribution functions are the quantum analogue of the classical phase space distribution and being quantum implies that they are not genuine phase space distribution and thus lack any probabilistic interpretation. Nevertheless, Wigner distributions are still interesting since they can be related to both generalized parton distributions (GPDs) and transverse momentum dependent parton distributions (TMDs) under some limit. We study the Wigner distribution of quarks and also the orbital angular momentum (OAM) of quarks in the dressed quark model.


1998 ◽  
Vol 114 (3) ◽  
pp. 322-334 ◽  
Author(s):  
N. M. Atakishiyev ◽  
Sh. M. Nagiyev ◽  
K. B. Wolf

Sign in / Sign up

Export Citation Format

Share Document