wigner distribution
Recently Published Documents


TOTAL DOCUMENTS

874
(FIVE YEARS 80)

H-INDEX

47
(FIVE YEARS 5)

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 240
Author(s):  
Michael Gerasimov ◽  
Egor Dyunin ◽  
Jacob Gerasimov ◽  
Johnathan Ciplis ◽  
Aharon Friedman

The construction of a transmission line (TL) for a wide tunable broad-spectrum THz radiation source is not a simple task. We present here a platform for the future use of designs of the TL through our homemade simulations. The TL is designed to be a component of the construction of an innovative accelerator at the Schlesinger Family Center for Compact Accelerators, Radiation Sources and Applications (FEL). We developed a three-dimensional space-frequency tool for the analysis of a radiation pulse. The total electromagnetic (EM) field on the edge of the source is represented in the frequency domain in terms of cavity eigenmodes. However, any pulse can be used regardless of its mathematical function, which is the key point of this work. The only requirement is the existence of the original pulse. This EM field is converted to geometric-optical ray representation through the Wigner transform at any desired resolution. Wigner’s representation allows us to describe the dynamics of field evolution in future propagation, which allows us to determine an initial design of the TL. Representation of the EM field by rays gives access to the ray tracing method and future processing, operating in the linear and non-linear regimes. This allows for fast work with graphics cards and parallel processing, providing great flexibility and serving as future preparation that enables us to apply advanced libraries such as machine learning. The platform is used to study the phase-amplitude and spectral characteristics of multimode radiation generation in a free-electron laser (FEL) operating in various operational parameters.


2021 ◽  
Author(s):  
Xiaoyan Zhang ◽  
Jisuo Wang ◽  
Lei Wang ◽  
Xiangguo Meng ◽  
Baolong Liang

Abstract Two new photon-modulated spin coherent states (SCSs) are introduced by operating the spin ladder operators J ± on the ordinary SCS in the Holstein-Primakoff realization and the nonclassicality is exhibited via their photon number distribution, second-order correlation function, photocount distribution and negativity of Wigner distribution. Analytical results show that the photocount distribution is a Bernoulli distribution and the Wigner functions are only associated with two-variable Hermite polynomials. Compared with the ordinary SCS, the photon-modulated SCSs exhibit more stronger nonclassicality in certain regions of the photon modulated number k and spin number j, which means that the nonclassicality can be enhanced by selecting suitable parameters.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeong Ryeol Choi

AbstractThe characteristics of nonstatic quantum light waves in the coherent state in a static environment is investigated. It is shown that the shape of the wave varies periodically as a manifestation of its peculiar properties of nonstaticity like the case of the Fock-state analysis for a nonstatic wave. A belly occurs in the graphic of wave evolution whenever the wave is maximally displaced in the quadrature space, whereas a node takes place every time the wave passes the equilibrium point during its oscillation. In this way, a belly and a node appear in turn successively. Whereas this change of wave profile is accompanied by the periodic variation of electric and magnetic energies, the total energy is conserved. The fluctuations of quadratures also vary in a regular manner according to the wave transformation in time. While the resultant time-varying uncertainty product is always larger than (or, at least, equal to) its quantum-mechanically allowed minimal value ($$\hbar /2$$ ħ / 2 ), it is smallest whenever the wave constitutes a belly or a node. The mechanism underlying the abnormal features of nonstatic light waves demonstrated here can be interpreted by the rotation of the squeezed-shape contour of the Wigner distribution function in phase space.


Author(s):  
Sheng-Zhou Qiang ◽  
Xian Jiang ◽  
Pu-Yu Han ◽  
Xi-Ya Shi ◽  
An-Yang Wu ◽  
...  

AbstractLinear canonical transform (LCT) is a powerful tool for improving the detection accuracy of the conventional Wigner distribution (WD). However, the LCT free parameters embedded increase computational complexity. Recently, the instantaneous cross-correlation function type of WD (ICFWD), a specific WD relevant to the LCT, has shown to be an outcome of the tradeoff between detection accuracy and computational complexity. In this paper, the ICFWD is applied to detect noisy single component and bi-component linear frequency-modulated (LFM) signals through the output signal-to-noise ratio (SNR) inequality modeling and solving with respect to the ICFWD and WD. The expectation-based output SNR inequality model between the ICFWD and WD on a pure deterministic signal added with a zero-mean random noise is proposed. The solutions of the inequality model in regard to single component and bi-component LFM signals corrupted with additive zero-mean stationary noise are obtained respectively. The detection accuracy of ICFWD with that of the closed-form ICFWD (CICFWD), the affine characteristic Wigner distribution (ACWD), the kernel function Wigner distribution (KFWD), the convolution representation Wigner distribution (CRWD) and the classical WD is compared. It also compares the computing speed of ICFWD with that of CICFWD, ACWD, KFWD and CRWD.


2021 ◽  
Vol 57 (12) ◽  
Author(s):  
Francesco Giacosa ◽  
Anna Okopińska ◽  
Vanamali Shastry

AbstractFirst, we discuss the conditions under which the non-relativistic and relativistic types of the Breit–Wigner energy distributions are obtained. Then, upon insisting on the correct normalization of the energy distribution, we introduce a Flatté-like relativistic distribution -denominated as Sill distribution- that (i) contains left-threshold effects, (ii) is properly normalized for any decay width, (iii) can be obtained as an appropriate limit in which the decay width is a constant, (iv) is easily generalized to the multi-channel case (v) as well as to a convoluted form in case of a decay chain and - last but not least - (vi) is simple to deal with. We compare the Sill distribution to spectral functions derived within specific QFT models and show that it fairs well in concrete examples that involve a fit to experimental data for the $$\rho $$ ρ , $$a_1(1260)$$ a 1 ( 1260 ) , and $$K^*(982)$$ K ∗ ( 982 ) mesons as well as the $$\varDelta (1232)$$ Δ ( 1232 ) baryon. We also present a study of the $$f_2(1270)$$ f 2 ( 1270 ) which has more than one possible decay channels. Finally, we discuss the limitations of the Sill distribution using the $$a_0(980)$$ a 0 ( 980 ) -$$a_0(1450)$$ a 0 ( 1450 ) and the $$K_0^*(700)$$ K 0 ∗ ( 700 ) -$$K_0^*(1430)$$ K 0 ∗ ( 1430 ) resonances as examples.


Author(s):  
Matteo Villani ◽  
Xavier Oriols

AbstractTo avoid the computational burden of many-body quantum simulation, the interaction of an electron with a photon (phonon) is typically accounted for by disregarding the explicit simulation of the photon (phonon) degree of freedom and just modeling its effect on the electron dynamics. For quantum models developed from the (reduced) density matrix or its Wigner–Weyl transformation, the modeling of collisions may violate complete positivity (precluding the typical probabilistic interpretation). In this paper, we show that such quantum transport models can also strongly violate the energy conservation in the electron–photon (electron–phonon) interactions. After comparing collisions models to exact results for an electron interacting with a photon, we conclude that there is no fundamental restriction that prevents a collision model developed within the (reduced) density matrix or Wigner formalisms to satisfy simultaneously complete positivity and energy conservation. However, at the practical level, the development of such satisfactory collision model seems very complicated. Collision models with an explicit knowledge of the microscopic state ascribed to each electron seems recommendable (Bohmian conditional wavefunction), since they allow to model collisions of each electron individually in a controlled way satisfying both complete positivity and energy conservation.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Maria Solyanik-Gorgone ◽  
Jiachi Ye ◽  
Mario Miscuglio ◽  
Andrei Afanasev ◽  
Alan E. Willner ◽  
...  

While information is ubiquitously generated, shared, and analyzed in a modern-day life, there is still some controversy around the ways to assess the amount and quality of information inside a noisy optical channel. A number of theoretical approaches based on, e.g., conditional Shannon entropy and Fisher information have been developed, along with some experimental validations. Some of these approaches are limited to a certain alphabet, while others tend to fall short when considering optical beams with a nontrivial structure, such as Hermite-Gauss, Laguerre-Gauss, and other modes with a nontrivial structure. Here, we propose a new definition of the classical Shannon information via the Wigner distribution function, while respecting the Heisenberg inequality. Following this definition, we calculate the amount of information in Gaussian, Hermite-Gaussian, and Laguerre-Gaussian laser modes in juxtaposition and experimentally validate it by reconstruction of the Wigner distribution function from the intensity distribution of structured laser beams. We experimentally demonstrate the technique that allows to infer field structure of the laser beams in singular optics to assess the amount of contained information. Given the generality, this approach of defining information via analyzing the beam complexity is applicable to laser modes of any topology that can be described by well-behaved functions. Classical Shannon information, defined in this way, is detached from a particular alphabet, i.e., communication scheme, and scales with the structural complexity of the system. Such a synergy between the Wigner distribution function encompassing the information in both real and reciprocal space and information being a measure of disorder can contribute into future coherent detection algorithms and remote sensing.


Optik ◽  
2021 ◽  
pp. 168375
Author(s):  
Xingling Liu ◽  
Jianliang Shi ◽  
Xuegang Yu ◽  
Xiangxi Li

2021 ◽  
Author(s):  
Hassan Nabil ◽  
Adil A. Balhamri ◽  
Abdelmajid Belafhal

Abstract In this paper, we investigated the influence of a turbulence jet engine exhaust on Laguerre-Gaussian correlated shell-model beams (LGSMBs). The analytical formulae of the cross-spectral density function as well as the beam width are derived based on the Huygens-Fresnel diffraction principle and the second-order moments of the Wigner distribution function, respectively. From our main results, the spectral density, the degree of coherence and beam width of a LGSMB are analyzed numerically. It is found that for high source coherence width, the spectral density changes gradually its profiles from circular to elliptical shape at short propagation distance, then the beam transforms into a well like Gaussian at long propagation distance. Although, at very short propagation distance, the beam becomes an elliptical dark hollow if the source coherence is very lower. Also, the numerical results show that the LGSMB spreads more rapidly than the GSMB in the same conditions.


Sign in / Sign up

Export Citation Format

Share Document