reduced distribution functions
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 0)

2020 ◽  
Vol 498 (4) ◽  
pp. 5524-5531
Author(s):  
Thomas Woolley ◽  
Lorenzo Matteini ◽  
Timothy S Horbury ◽  
Stuart D Bale ◽  
Lloyd D Woodham ◽  
...  

ABSTRACT During Parker Solar Probe’s first two orbits, there are widespread observations of rapid magnetic field reversals known as switchbacks. These switchbacks are extensively found in the near-Sun solar wind, appear to occur in patches, and have possible links to various phenomena such as magnetic reconnection near the solar surface. As switchbacks are associated with faster plasma flows, we questioned whether they are hotter than the background plasma and whether the microphysics inside a switchback is different to its surroundings. We have studied the reduced distribution functions from the Solar Probe Cup instrument and considered time periods with markedly large angular deflections to compare parallel temperatures inside and outside switchbacks. We have shown that the reduced distribution functions inside switchbacks are consistent with a rigid velocity space rotation of the background plasma. As such, we conclude that the proton core parallel temperature is very similar inside and outside of switchbacks, implying that a temperature–velocity (T–V) relationship does not hold for the proton core parallel temperature inside magnetic field switchbacks. We further conclude that switchbacks are consistent with Alfvénic pulses travelling along open magnetic field lines. The origin of these pulses, however, remains unknown. We also found that there is no obvious link between radial Poynting flux and kinetic energy enhancements suggesting that the radial Poynting flux is not important for the dynamics of switchbacks.


2006 ◽  
Vol 20 (03) ◽  
pp. 341-353 ◽  
Author(s):  
VASILY E. TARASOV

We consider dynamical systems that are described by fractional power of coordinates and momenta. The fractional powers can be considered as a convenient way to describe systems in the fractional dimension space. For the usual space the fractional systems are non-Hamiltonian. Generalized transport equation is derived from Liouville and Bogoliubov equations for fractional systems. Fractional generalization of average values and reduced distribution functions are defined. Gasdynamic equations for fractional systems are derived from the generalized transport equation.


Sign in / Sign up

Export Citation Format

Share Document