Role of laser pulse asymmetry in electron acceleration in vacuum in the presence of an axial magnetic field

2020 ◽  
Vol 27 (12) ◽  
pp. 123102
Author(s):  
Deep Kumar Kuri
2001 ◽  
Vol 19 (1) ◽  
pp. 133-136 ◽  
Author(s):  
I. KOSTYUKOV ◽  
G. SHVETS ◽  
N.J. FISCH ◽  
J.M. RAX

Interaction between energetic electrons and a circularly polarized laser pulse in a relativistic plasma channel is studied. Laser radiation can be resonantly absorbed by electrons executing betatron oscillations in the channel and absorbing angular momentum from the laser. The absorbed angular momentum manifests itself as a strong axial magnetic field (inverse Faraday effect). The magnitude of this magnetic field is calculated and related to the amount of the absorbed energy.


Sign in / Sign up

Export Citation Format

Share Document