azimuthal magnetic field
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 35)

H-INDEX

16
(FIVE YEARS 4)

2021 ◽  
Vol 11 (24) ◽  
pp. 11966
Author(s):  
Artem V. Korzhimanov

A scheme to generate magnetized relativistic plasmas in a laboratory setting is proposed. It is based on the interaction of ultra-high-intensity sub-picosecond laser pulses with few-micron-thick foils or films. By means of Particle-In-Cell simulations, it is shown that energetic electrons produced by the laser and evacuated at the rear of the target trigger an expansion of the target, building up a strong azimuthal magnetic field. It is shown that in the expanding plasma sheath, a ratio of the magnetic pressure and the electron rest-mass energy density exceeds unity, whereas the plasma pressure is lower than the magnetic pressure and the electron gyroradius is lower than the plasma dimension. This scheme can be utilized to study astrophysical extreme phenomena such as relativistic magnetic reconnection in laboratory.


2021 ◽  
Vol 57 (6) ◽  
pp. 72-78
Author(s):  
М. И. Баранов ◽  

The paper demonstrates the results of approximate calculations on the establishment of basic features of the propagation of standing transversal electromagnetic waves (EMWs) and standing longitudinal de Broglie electronic waves in a homogeneous not massive non-magnetic metallic conductor of finite dimensions (the radius r0 and the length l0 >>r0) with the alternating axial-flow current of conductivity of i0(t) of different peak-temporal parameters. The correlation for the rated estimation of the average velocity of propagation of the standing transversal EMWs and standing longitudinal de Broglie electronic waves in a metal (alloy) of the indicated conductor is presented. It is shown that quantized standing transversal EMWs arising in a metallic conductor of finite dimensions substantially differ from ordinary transversal EMWs, propagated in the conducting environments of unlimited dimensions. An important feature of the standing transversal EMWs in the examined conductor is the fact that their tension of an axial-flow electric-field advances by a phase their tension of an azimuthal magnetic-field on the corner of π/2. It was established that in the standing transversal EMWs of the used conductor the energy of their electric field only passes into the energy of their magnetic field and vice versa. Therefore the standing transversal EMWs do not transfer the flows of the electromagnetic energy on the surface of the studied conductor.


Author(s):  
Zi-Xuan Su ◽  
De-Hua Shi ◽  
Yong-Xin Liu ◽  
Kai Zhao ◽  
Fei Gao ◽  
...  

Abstract Temporal evolution of electrical and plasma parameters over 300 mm-diameter electrodes during the pre-ignition, ignition, and post-ignition phases of a pulsed capacitively coupled radio-frequency (RF) argon discharge is investigated by multi-fold experimental diagnostics. The electron density, n e, and the optical emission intensity (OEI) at different radial positions are measured time-resolved by using a hairpin probe and an optical probe, respectively. A B-dot probe is employed to determine the waveforms of the azimuthal magnetic field at different radii, from which the waveforms of the axial current density at corresponding radial positions are derived based on Ampere’s law. Then, the time evolution of the power density at various radii can be calculated, provided that the voltage drop across the electrodes is independent of radius. Meanwhile, the time-dependent total power deposited into the reactor is calculated with the voltage and the current waveforms measured by a voltage and a current probe at the power feeding point. It was found that during pre-ignition phase, the OEI and n e cannot be measurable due to extremely low power deposition when the system exhibits pure capacitive impedance. During the ignition phase, the OEI, the power density, and the current density exhibit the most significant increase at the electrode center, while time evolution of n e seems to exhibit a relatively weak radial dependence. In particular, at small radii, i.e. r ≤ 8 cm, the OEI was observed to change with time in the same manner as the power density during the ignition phase, because the RF power is absorbed primarily by electrons, which dissipate their energy via inelastic collisions. The more drastic ignition at the center is possibly associated with a center-high profile of Ar metastable density at the beginning of each pulse. Shortly, the profile of n e becomes edge-high during the post-ignition phase and remains thereafter until the end of the pulse-on periods. Methodologically, the synergistic diagnostics lay the foundation for extensive studies on spatiotemporal evolution of plasma ignition process under broader conditions, e.g. low gas pressure and very high frequency, widely used by practical etching process.


Author(s):  
Praveen Kumar Sahu

Abstract The proliferation of the cylindrical shock in non-ideal rotating gases accompanying the mixture of crystalline solids with monochromatic radiation as well as magnetic (azimuthal/axial) field is examined. The fluid velocity of ambient media is considered to contain radial, axial, and azimuthal heads. Similarity solutions are achieved. The distribution of flow variables in the medium just behind the shock for the cases of power-law shock paths are analyzed. This is worthy to note, the pressure and density at piston disintegrate in occupancy of an azimuthal magnetic field, therefore suction structures at the axis of symmetry, which is identically in accord with controlled circumstances for trying to produce shock waves.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012058
Author(s):  
I Louksha ◽  
P A Trofimov ◽  
B D Usherenko

Abstract The results of modeling a collector with 4-stage recovery of residual electron energy for the SPbPU gyrotron with a frequency of 74.2 GHz and an output power of 100 kW are presented. For spatial separation of electrons with different energies, an azimuthal magnetic field created by a toroidal solenoid is used. An increase of the recovery efficiency and a decrease of the current of electrons reflected from the collector is achieved by reducing the spread of the radial position of the leading centers of electron trajectories at optimal parameters of the toroidal solenoid, as well as by using a sectioned electron beam. The trajectory analysis of the spent electron beam in the collector region showed the possibility of achieving the total efficiency of the gyrotron, close to 80%.


2021 ◽  
Vol 927 ◽  
Author(s):  
Romain Canu ◽  
Marie-Charlotte Renoult

We performed a linear stability analysis of a Newtonian ferrofluid cylinder surrounded by a Newtonian non-magnetic fluid in an azimuthal magnetic field. A wire is used at the centre of the ferrofluid cylinder to create this magnetic field. Isothermal conditions are considered and gravity is ignored. An axisymmetric perturbation is imposed at the interface between the two fluids and a dispersion relation is obtained allowing us to predict whether the flow is stable or unstable with respect to this perturbation. This relation is dependent on the Ohnesorge number of the ferrofluid, the dynamic viscosity ratio, the density ratio, the magnetic Bond number, the relative magnetic permeability and the dimensionless wire radius. Solutions to this dispersion relation are compared with experimental data from Arkhipenko et al. (Fluid Dyn., vol. 15, issue 4, 1981, pp. 477–481) and, more recently, Bourdin et al. (Phys. Rev. Lett., vol. 104, issue 9, 2010, 094502). A better agreement than the inviscid theory and the theory that only takes into account the viscosity of the ferrofluid is shown with the data of Arkhipenko et al. (Fluid Dyn., vol. 15, issue 4, 1981, pp. 477–481) and those of Bourdin et al. (Phys. Rev. Lett., vol. 104, issue 9, 2010, 094502) for small wavenumbers.


2021 ◽  
Vol 503 (4) ◽  
pp. 4918-4929
Author(s):  
Jin Matsumoto ◽  
Serguei S Komissarov ◽  
Konstantinos N Gourgouliatos

ABSTRACT In this paper, we describe the results of three-dimensional relativistic magnetohydrodynamic simulations aimed at probing the role of regular magnetic field on the development of the instability that accompanies recollimation of relativistic jets. In particular, we studied the recollimation driven by the reconfinement of jets from active galactic nuclei (AGN) by the thermal pressure of galactic coronas. We find that a relatively weak azimuthal magnetic field can completely suppress the recollimation instability in such jets, with the critical magnetization parameter σcr < 0.01. We argue that the recollimation instability is a variant of the centrifugal instability (CFI) and show that our results are consistent with the predictions based on the study of magnetic CFI in rotating fluids. The results are discussed in the context of AGN jets in general and the nature of the Fanaroff–Riley morphological division of extragalactic radio sources in particular.


Sign in / Sign up

Export Citation Format

Share Document