linearly polarized
Recently Published Documents


TOTAL DOCUMENTS

2639
(FIVE YEARS 584)

H-INDEX

59
(FIVE YEARS 10)

2022 ◽  
Vol 147 ◽  
pp. 107708
Author(s):  
Tao Chen ◽  
Xin Chen ◽  
Chenglin Zhou ◽  
Genghua Huang ◽  
Zhiping He ◽  
...  

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 494
Author(s):  
Damenraj Rajkumar ◽  
Rainer Künnemeyer ◽  
Harpreet Kaur ◽  
Jevon Longdell ◽  
Andrew McGlone

Near infrared (NIR) spectroscopy is an important tool for predicting the internal qualities of fruits. Using aquaphotomics, spectral changes between linearly polarized and unpolarized light were assessed on 200 commercially grown yellow-fleshed kiwifruit (Actinidia chinensis var. chinensis ‘Zesy002’). Measurements were performed on different configurations of unpeeled (intact) and peeled (cut) kiwifruit using a commercial handheld NIR instrument. Absorbance after applying standard normal variate (SNV) and second derivative Savitzky–Golay filters produced different spectral features for all configurations. An aquagram depicting all configurations suggests that linearly polarized light activated more free water states and unpolarized light activated more bound water states. At depth (≥1 mm), after several scattering events, all radiation is expected to be fully depolarized and interactions for incident polarized or unpolarized light will be similar, so any observed differences are attributable to the surface layers of the fruit. Aquagrams generated in terms of the fruit soluble solids content (SSC) were similar for all configurations, suggesting the SSC in fruit is not a contributing factor here.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 255
Author(s):  
Eugenio Fazio ◽  
Sidra Batool ◽  
Mehwish Nisar ◽  
Massimo Alonzo ◽  
Fabrizio Frezza

In this paper, we develop a simple technique to identify material texture from far, by using polarization-resolved imaging. Such a technique can be easily implemented into industrial environments, where fast and cheap sensors are required. The technique has been applied to both isotropic references (Teflon bar) and anisotropic samples (wood). By studying the radiance of the samples illuminated by linearly polarized light, different and specific behaviours are identified for both isotropic and anisotropic samples, in terms of multipolar emission and linear dichroism, from which fibre orientation can be resolved.


Author(s):  
Hend A. Malhat ◽  
Sarah Elgiddawy ◽  
Saber Zainud-Deen ◽  
Hesham F. A. Hamed ◽  
Ahmed A. Ibrahim

2022 ◽  
pp. 2109659
Author(s):  
Eric B. Whiting ◽  
Michael D. Goldflam ◽  
Lei Kang ◽  
Michael B. Sinclair ◽  
Katherine M. Musick ◽  
...  

Author(s):  
Olivér Csernyava ◽  
Bálint Péter Horváth ◽  
Zsolt Badics ◽  
Sándor Bilicz

Purpose The purpose of this paper is the development of an analytic computational model for electromagnetic (EM) wave scattering from spherical objects. The main application field is the modeling of electrically large objects, where the standard numerical techniques require huge computational resources. An example is full-wave modeling of the human head in the millimeter-wave regime. Hence, an approximate model or analytical approach is used. Design/methodology/approach The Mie–Debye theorem is used for calculating the EM scattering from a layered dielectric sphere. The evaluation of the analytical expressions involved in the infinite sum has several numerical instabilities, which makes the precise calculation a challenge. The model is validated through an application example with comparing results to numerical calculations (finite element method). The human head model is used with the approximation of a two-layer sphere, where the brain tissues and the cranial bones are represented by homogeneous materials. Findings A significant improvement is introduced for the stable calculation of the Mie coefficients of a core–shell stratified sphere illuminated by a linearly polarized EM plane wave. Using this technique, a semi-analytical expression is derived for the power loss in the sphere resulting in quick and accurate calculations. Originality/value Two methods are introduced in this work with the main objective of estimating the final precision of the results. This is an important aspect for potentially unstable calculations, and the existing implementations have not included this feature so far.


2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Ivan Melchor ◽  
Javier Almendros ◽  
Marcia Hantusch ◽  
Sergey Samsonov ◽  
Dominique Derauw ◽  
...  

AbstractUnderstanding seismic tremor wavefields can shed light on the complex functioning of a volcanic system and, thus, improve volcano monitoring systems. Usually, several seismic stations are required to detect, characterize, and locate volcanic tremors, which can be difficult in remote areas or low-income countries. In these cases, alternative techniques have to be used. Here, we apply a data-reduction approach based on the analysis of three-component seismic data from two co-located stations operating in different times to detect and analyze long-duration tremors. We characterize the spectral content and the polarization of 355 long-duration tremors recorded by a seismic sensor located 9.5 km SE from the active vent of Copahue volcano in the period 2012–2016 and 2018–2019. We classified them as narrow- (NB) and broad-band (BB) tremors according to their spectral content. Several parameters describe the characteristic peaks composing each NB episode: polarization degree, rectilinearity, horizontal azimuth, vertical incidence. Moreover, we propose two coefficients $$C_P$$ C P and $$C_L$$ C L for describing to what extent the wavefield is polarized. For BB episodes, we extend these attributes and express them as a function of frequency. We compare the occurrence of NB and BB episodes with the volcanic activity (including the level of the crater lake, deformation, temperature, and explosive activity) to get insights into their mechanisms. This comparison suggests that the wavefield of NB tremors becomes more linearly polarized during eruptive episodes, but does not provide any specific relationship between the tremor frequency and volcanic activity. On the other hand, BB tremors show a seasonal behavior that would be related to the activity of the shallow hydrothermal system. Graphical Abstract


2022 ◽  
Vol 9 ◽  
Author(s):  
Shuwei Qiu ◽  
Jinwen Wang ◽  
Xin Yang ◽  
Mingtao Cao ◽  
Shougang Zhang ◽  
...  

A vector beam with the spatial variation polarization has attracted keen interest and is progressively applied in quantum information, quantum communication, precision measurement, and so on. In this letter, the spectrum observation of the rotational Doppler effect based on the coherent interaction between atoms and structured light in an atomic vapor is realized. The geometric phase and polarization of the structured beam are generated and manipulated by using a flexible and efficacious combination optical elements, converting an initial linearly polarized Gaussian beam into a phase vortex beam or an asymmetric or symmetric vector beam. These three representative types of structured beam independently interact with atoms under a longitudinal magnetic field to explore the rotational Doppler shift associated with the topological charge. We find that the rotational Doppler broadening increases obviously with the topological charge of the asymmetric and symmetric vector beam. There is no rotational Doppler broadening observed from the spectrum of the phase vortex beam, although the topological charge, and spatial profile of the beam change. This study can be applied to estimate the rotational velocity of the atom-level or molecule-level objects, measure the intensity of magnetic fields and study the quantum coherence in atomic ensembles.


Sign in / Sign up

Export Citation Format

Share Document