The Hermann Grid Illusion: A Tool for Studying Human Perceptive Field Organization

Perception ◽  
1994 ◽  
Vol 23 (6) ◽  
pp. 691-708 ◽  
Author(s):  
Lothar Spillmann

Psychophysical research on the Hermann grid illusion is reviewed and possible neurophysiological mechanisms are discussed. The illusion is most plausibly explained by lateral inhibition within the concentric receptive fields of retinal and/or geniculate ganglion cells, with contributions by the binocular orientation-specific cortical cells. Results may be summarized as follows: (a) For a strong Hermann grid illusion to be seen bar width must be matched to the mean size of receptive-field centers at any given retinal eccentricity. (b) With the use of this rationale, the diameter of foveal perceptive-field centers (the psychophysical correlate of receptive-field centers) has been found to be in the order of 4–5 min arc and that of total fields (centers plus surrounds) 18 min arc. These small diameters explain why the illusion tends to be absent in foveal vision. (c) With increasing distance from the fovea, perceptive-field centers increase to 1.7 deg at 15 deg eccentricity and then to 3.4 deg at 60 deg eccentricity. This doubling in diameter agrees with the change in size of retinal receptive-field centers in the monkey. (d) The Hermann grid illusion is diminished with dark adaptation. This finding is consistent with the reduction of the center—surround antagonism in retinal receptive fields. (e) The illusion is also weakened when the grid is presented diagonally, which suggests a contribution by the orientation-sensitive cells in the lateral geniculate nucleus and visual cortex. (f) Strong induction effects, similar to the bright and dark spots in the Hermann grid illusion, may be elicited by grids made of various shades of grey; and by grids varying only in chroma or hue. Not accounted for are: the illusory spots occurring in an outline grid ie with hollow squares, and the absence of an illusion when extra bars are added to the grid. Alternative explanations are discussed for the spurious lines connecting the illusory spots along the diagonals and the fuzzy dark bands traversing the rhombi in modified Hermann grids.

1985 ◽  
Vol 54 (1) ◽  
pp. 61-72 ◽  
Author(s):  
A. S. Ramoa ◽  
R. D. Freeman ◽  
A. Macy

Receptive-field organization of cells in the cat's striate cortex and lateral geniculate nucleus (LGN) was investigated by using bars of light as stimuli. The aim was to determine if differences occur between conditions of high and low luminance levels. Of 72 cortical cells studied, the receptive fields of 63 were clearly different at high compared with low luminances. Units that gave on-off responses to flashed bars, for example, typically displayed on-only responses at low luminance. By far the most frequent change was that off responses were reduced or absent at low luminance levels. Of 63 cells that showed clear changes, 54 were of this type. This altered receptive-field organization appears to remain for extended periods (we have monitored the steady-state case for up to 2 h). Additional tests allow us to rule out the possible influence of overall changes in response strength and scattered light. To see if similar changes in receptive-field organization are present at the level of the LGN, we recorded from a small number of cells in the LGN (n = 10) and from an additional five afferent fibers in the cortex. In each case, there was a change in center-surround organization between high and low luminance levels similar to that previously reported for retinal ganglion cells. The excitatory responses from the surround for both on-center and off-center cells were absent at low luminance. Taken together, the results suggest that surround responses that can be elicited from ganglion cells and LGN cells make an important contribution to the receptive-field organization of cortical neurons. Changes in receptive-field organization of cortical cells are apparently not accompanied by alterations of other basic response properties. Orientation (7 cells) and spatial frequency (53 cells) selectivity remain relatively unchanged when measured at different luminances. Although optimal spatial frequency is slightly lower at low luminance levels, the low spatial frequency attenuation remains unaltered. Since receptive-field changes between high and low luminance levels suggest that a unit's classification may also vary, we examined simple and complex cell characteristics using sinusoidal gratings (65 cells). Contrary to what we had anticipated, the degree of modulation of responses was relatively independent of luminance, indicating that cell classification does not vary with stimulus luminance.


1994 ◽  
Vol 11 (4) ◽  
pp. 703-720 ◽  
Author(s):  
Ming Sun ◽  
A. B. Bonds

AbstractThe two-dimensional organization of receptive fields (RFs) of 44 cells in the cat visual cortex and four cells from the cat LGN was measured by stimulation with either dots or bars of light. The light bars were presented in different positions and orientations centered on the RFs. The RFs found were arbitrarily divided into four general types: Punctate, resembling DOG filters (11%); those resembling Gabor filters (9%); elongate (36%); and multipeaked-type (44%). Elongate RFs, usually found in simple cells, could show more than one excitatory band or bifurcation of excitatory regions. Although regions inhibitory to a given stimulus transition (e.g. ON) often coincided with regions excitatory to the opposite transition (e.g. OFF), this was by no means the rule. Measurements were highly repeatable and stable over periods of at least 1 h. A comparison between measurements made with dots and with bars showed reasonable matches in about 40% of the cases. In general, bar-based measurements revealed larger RFs with more structure, especially with respect to inhibitory regions. Inactivation of lower cortical layers (V-VI) by local GABA injection was found to reduce sharpness of detail and to increase both receptive-field size and noise in upper layer cells, suggesting vertically organized RF mechanisms. Across the population, some cells bore close resemblance to theoretically proposed filters, while others had a complexity that was clearly not generalizable, to the extent that they seemed more suited to detection of specific structures. We would speculate that the broadly varying forms of cat cortical receptive fields result from developmental processes akin to those that form ocular-dominance columns, but on a smaller scale.


1999 ◽  
Vol 81 (2) ◽  
pp. 825-834 ◽  
Author(s):  
Iran Salimi ◽  
Thomas Brochier ◽  
Allan M. Smith

Neuronal activity in somatosensory cortex of monkeys using a precision grip. I. Receptive fields and discharge patterns. Three adolescent Macaca fascicularis monkeys weighing between 3.5 and 4 kg were trained to use a precision grip to grasp a metal tab mounted on a low friction vertical track and to lift and hold it in a 12- to 25-mm position window for 1 s. The surface texture of the metal tab in contact with the fingers and the weight of the object could be varied. The activity of 386 single cells with cutaneous receptive fields contacting the metal tab were recorded in Brodmann’s areas 3b, 1, 2, 5, and 7 of the somatosensory cortex. In this first of a series of papers, we describe three types of discharge pattern, the receptive-field properties, and the anatomic distribution of the neurons. The majority of the receptive fields were cutaneous and covered less than one digit, and a χ2 test did not reveal any significant differences in the Brodmann’s areas representing the thumb and index finger. Two broad categories of discharge pattern cells were identified. The first category, dynamic cells, showed a brief increase in activity beginning near grip onset, which quickly subsided despite continued pressure applied to the receptive field. Some of the dynamic neurons responded to both skin indentation and release. The second category, static cells, had higher activity during the stationary holding phase of the task. These static neurons demonstrated varying degrees of sensitivity to rates of pressure change on the skin. The percentage of dynamic versus static cells was about equal for areas 3b, 2, 5, and 7. Only area 1 had a higher proportion of dynamic cells (76%). A third category was identified that contained cells with significant pregrip activity and included cortical cells with both dynamic or static discharge patterns. Cells in this category showed activity increases before movement in the absence of receptive-field stimulation, suggesting that, in addition to peripheral cutaneous input, these cells also receive strong excitation from movement-related regions of the brain.


Contrast sensitivity as a function of spatial frequency was determined for 138 neurons in the foveal region of primate striate cortex. The accuracy of three models in describing these functions was assessed by the method of least squares. Models based on difference-of-Gaussians (DOG) functions were shown to be superior to those based on the Gabor function or the second differential of a Gaussian. In the most general case of the DOG models, each subregion of a simple cell’s receptive field was constructed from a single DOG function. All the models are compatible with the classical observation that the receptive fields of simple cells are made up of spatially discrete ‘on’ and ‘off’ regions. Although the DOG-based models have more free parameters, they can account better for the variety of shapes of spatial contrast sensitivity functions observed in cortical cells and, unlike other models, they provide a detailed description of the organization of subregions of the receptive field that is consistent with the physiological constraints imposed by earlier stages in the visual pathway. Despite the fact that the DOG-based models have spatially discrete components, the resulting amplitude spectra in the frequency domain describe complex cells just as well as simple cells. The superiority of the DOG-based models as a primary spatial filter is discussed in relation to popular models of visual processing that use the Gabor function or the second differential of a Gaussian.


2000 ◽  
Vol 17 (2) ◽  
pp. 263-271 ◽  
Author(s):  
HIROYUKI UCHIYAMA ◽  
TAKAHIDE KANAYA ◽  
SHOICHI SONOHATA

One type of retinal ganglion cells prefers object motion in a particular direction. Neuronal mechanisms for the computation of motion direction are still unknown. We quantitatively mapped excitatory and inhibitory regions of receptive fields for directionally selective retinal ganglion cells in the Japanese quail, and found that the inhibitory regions are displaced about 1–3 deg toward the side where the null sweep starts, relative to the excitatory regions. Directional selectivity thus results from delayed transient suppression exerted by the nonconcentrically arranged inhibitory regions, and not by local directional inhibition as hypothesized by Barlow and Levick (1965).


1998 ◽  
Vol 15 (6) ◽  
pp. 1145-1155 ◽  
Author(s):  
D.-J. OH ◽  
D.P.M. NORTHMORE

After being severed, optic axons in goldfish regenerate and eventually restore the retinotectal map; refinement of the map depends upon impulse activity generated by the ganglion cells. Because little is known about the changes in activity and receptive-field properties of ganglion cells during regeneration, we made extracellular recordings from them in the intact eye up to 95 days after sectioning their axons in the optic tract. Their receptive fields were classified as OFF-, ON–OFF-, or ON-centers, and their axonal conduction velocities measured by antidromic activation. The rate of encountering single units dropped drastically at 4–8 days postsection when only a few OFF-center units could be recorded, recovering to normal between 42 and 63 days. Receptive-field centers were normal in size, except for the few OFF-centers at 4–8 days which were abnormally large. Maintained discharge rates of all types were depressed up to 42 days, but ON–OFF-center units were more spontaneously active than normal around 42 days. Light-evoked responses in OFF-center units were subnormal at 4–8 days, becoming supernormal at 16 days and normal thereafter. ON–OFF- and ON-center units started to regain responsiveness at 16 days, and became supernormal at 42 days, before returning to normal. Conduction velocities of all fiber groups dropped to a minimum at 8 days, the fastest being affected most. There was a gradual recovery to normal conduction velocity by 63 days. The conduction latencies of OFF- and ON–OFF-center units recovered to normal by 42 days, and ON-center units by 63 days. Recovery of ganglion cell responsiveness correlates with functional recovery in the retinotectal system: OFF-center units recover light-evoked responses at about the time OFF activity first reappears in the tectum. ON- and ON–OFF-center units recover later, exhibiting supernormal spiking activity around the time that ON responses reappear in the tectum.


1997 ◽  
Vol 14 (6) ◽  
pp. 1153-1165 ◽  
Author(s):  
Stewart A. Bloomfield ◽  
Daiyan Xin

AbstractRecent studies have shown that amacrine and ganglion cells in the mammalian retina are extensively coupled as revealed by the intercellular movement of the biotinylated tracers biocytin and Neurobiotin. These demonstrations of tracer coupling suggest that electrical networks formed by proximal neurons (i.e. amacrine and ganglion cells) may underlie the lateral propagation of signals across the inner retina. We studied this question by comparing the receptive-field size, dendritic-field size, and extent of tracer coupling of amacrine and ganglion cells in the dark-adapted, supervised, isolated retina eyecup of the rabbit. Our results indicate that while the center-receptive fields of proximal neurons are approximately 15% larger than their corresponding dendritic diameters, this slight difference can be explained by factors other than electrical coupling such as tissue shrinkage associated with histological processing. However, the extent of tracer coupling of amacrine and ganglion cells was, on average, about twice the size of the corresponding receptive fields. Thus, the receptive field of an individual proximal neuron matched far more closely to its dendritic diameter than to the size of the tracer-coupled network of cells to which it belonged. The exception to this rule was the AII amacrine cells for which center-receptive fields were 2–3 times the size of their dendritic diameters but matched closely to the size of the tracer-coupled arrays. Thus, with the exception of AII cells, our data indicate that tracer coupling between proximal neurons is not associated with an enlargement of their receptive fields. Our results, then, provide no evidence for electrical coupling or, at least, indicate that extensive lateral spread of visual signals does not occur in the proximal mammalian retina.


2021 ◽  
Author(s):  
Giordano Ramos-Traslosheros ◽  
Marion Silies

In Drosophila, direction-selective neurons implement a mechanism of motion computation similar to cortical neurons, using contrast-opponent receptive fields with ON and OFF subunits. It is not clear how the presynaptic circuitry of direction-selective neurons in the OFF pathway supports this computation, because all major inputs are OFF-rectified neurons. Here, we reveal the biological substrate for motion computation in the OFF pathway. Three interneurons, Tm2, Tm9 and CT1, also provide information about ON stimuli to the OFF direction-selective neuron T5 across its receptive field, supporting a contrast-opponent receptive field organization. Consistent with its prominent role in motion detection, variability in Tm9 receptive field properties is passed on to T5, and calcium decrements in Tm9 in response to ON stimuli are maintained across behavioral states, while spatial tuning is sharpened by active behavior. Together, our work shows how a key neuronal computation is implemented by its constituent neuronal circuit elements to ensure direction selectivity.


Sign in / Sign up

Export Citation Format

Share Document