Functional properties of retinal ganglion cells during optic nerve regeneration in the goldfish

1998 ◽  
Vol 15 (6) ◽  
pp. 1145-1155 ◽  
Author(s):  
D.-J. OH ◽  
D.P.M. NORTHMORE

After being severed, optic axons in goldfish regenerate and eventually restore the retinotectal map; refinement of the map depends upon impulse activity generated by the ganglion cells. Because little is known about the changes in activity and receptive-field properties of ganglion cells during regeneration, we made extracellular recordings from them in the intact eye up to 95 days after sectioning their axons in the optic tract. Their receptive fields were classified as OFF-, ON–OFF-, or ON-centers, and their axonal conduction velocities measured by antidromic activation. The rate of encountering single units dropped drastically at 4–8 days postsection when only a few OFF-center units could be recorded, recovering to normal between 42 and 63 days. Receptive-field centers were normal in size, except for the few OFF-centers at 4–8 days which were abnormally large. Maintained discharge rates of all types were depressed up to 42 days, but ON–OFF-center units were more spontaneously active than normal around 42 days. Light-evoked responses in OFF-center units were subnormal at 4–8 days, becoming supernormal at 16 days and normal thereafter. ON–OFF- and ON-center units started to regain responsiveness at 16 days, and became supernormal at 42 days, before returning to normal. Conduction velocities of all fiber groups dropped to a minimum at 8 days, the fastest being affected most. There was a gradual recovery to normal conduction velocity by 63 days. The conduction latencies of OFF- and ON–OFF-center units recovered to normal by 42 days, and ON-center units by 63 days. Recovery of ganglion cell responsiveness correlates with functional recovery in the retinotectal system: OFF-center units recover light-evoked responses at about the time OFF activity first reappears in the tectum. ON- and ON–OFF-center units recover later, exhibiting supernormal spiking activity around the time that ON responses reappear in the tectum.

1995 ◽  
Vol 74 (5) ◽  
pp. 2100-2125 ◽  
Author(s):  
D. M. Snodderly ◽  
M. Gur

1. In alert macaque monkeys, multiunit activity is encountered in an alternating sequence of silent and spontaneously active zones as an electrode is lowered through the striate cortex (V1). 2. Individual neurons that are spontaneously active in the dark usually have a maintained discharge in the light. Because both types of discharge occur in the absence of deliberate stimulation, we call them the "ongoing" activity. The zones with ongoing activity correspond to the cytochrome oxidase (CytOx)-rich geniculorecipient layers 4A, 4C, and 6, whereas the adjacent layers 2/3, 4B, and 5 have little ongoing activity. 3. The widths of receptive field activating regions (ARs) are positively correlated with the cells' ongoing activity. Cells with larger ARs are preferentially located in the CytOx-rich (input) layers, and many are unselective for stimulus orientation. However, approximately 90% of the cells in the silent layers are orientation selective, and they often have small ARs. 4. The laminar distribution of selectivity for orientation and direction of movement in alert animals is consistent with earlier results from anesthetized animals, but the laminar distribution of AR widths differs. In alert macaques, the ARs of direction-selective cells in layer 4B and of orientation-selective cells in layer 5 are among the smallest in V1. 5. Our findings indicate that the input layers of V1 (4A, 4C, and 6) have a diversity of AR widths, including large ones. Cortical processing produces receptive fields in some of the output layers (4B and 5) that are restricted to small ARs with high resolution of spatial position. These results imply potent lateral and/or interlaminar interactions in alert animals in early cortical processing. The diversity of AR widths generated in V1 may contribute to detection of fine detail in the presence of contrasting backgrounds--the early stages of figure-ground discrimination.


Perception ◽  
1994 ◽  
Vol 23 (6) ◽  
pp. 691-708 ◽  
Author(s):  
Lothar Spillmann

Psychophysical research on the Hermann grid illusion is reviewed and possible neurophysiological mechanisms are discussed. The illusion is most plausibly explained by lateral inhibition within the concentric receptive fields of retinal and/or geniculate ganglion cells, with contributions by the binocular orientation-specific cortical cells. Results may be summarized as follows: (a) For a strong Hermann grid illusion to be seen bar width must be matched to the mean size of receptive-field centers at any given retinal eccentricity. (b) With the use of this rationale, the diameter of foveal perceptive-field centers (the psychophysical correlate of receptive-field centers) has been found to be in the order of 4–5 min arc and that of total fields (centers plus surrounds) 18 min arc. These small diameters explain why the illusion tends to be absent in foveal vision. (c) With increasing distance from the fovea, perceptive-field centers increase to 1.7 deg at 15 deg eccentricity and then to 3.4 deg at 60 deg eccentricity. This doubling in diameter agrees with the change in size of retinal receptive-field centers in the monkey. (d) The Hermann grid illusion is diminished with dark adaptation. This finding is consistent with the reduction of the center—surround antagonism in retinal receptive fields. (e) The illusion is also weakened when the grid is presented diagonally, which suggests a contribution by the orientation-sensitive cells in the lateral geniculate nucleus and visual cortex. (f) Strong induction effects, similar to the bright and dark spots in the Hermann grid illusion, may be elicited by grids made of various shades of grey; and by grids varying only in chroma or hue. Not accounted for are: the illusory spots occurring in an outline grid ie with hollow squares, and the absence of an illusion when extra bars are added to the grid. Alternative explanations are discussed for the spurious lines connecting the illusory spots along the diagonals and the fuzzy dark bands traversing the rhombi in modified Hermann grids.


2000 ◽  
Vol 17 (2) ◽  
pp. 263-271 ◽  
Author(s):  
HIROYUKI UCHIYAMA ◽  
TAKAHIDE KANAYA ◽  
SHOICHI SONOHATA

One type of retinal ganglion cells prefers object motion in a particular direction. Neuronal mechanisms for the computation of motion direction are still unknown. We quantitatively mapped excitatory and inhibitory regions of receptive fields for directionally selective retinal ganglion cells in the Japanese quail, and found that the inhibitory regions are displaced about 1–3 deg toward the side where the null sweep starts, relative to the excitatory regions. Directional selectivity thus results from delayed transient suppression exerted by the nonconcentrically arranged inhibitory regions, and not by local directional inhibition as hypothesized by Barlow and Levick (1965).


1987 ◽  
Vol 57 (4) ◽  
pp. 977-1001 ◽  
Author(s):  
H. A. Swadlow ◽  
T. G. Weyand

The intrinsic stability of the rabbit eye was exploited to enable receptive-field analysis of antidromically identified corticotectal (CT) neurons (n = 101) and corticogeniculate (CG) neurons (n = 124) in visual area I of awake rabbits. Eye position was monitored to within 1/5 degrees. We also studied the receptive-field properties of neurons synaptically activated via electrical stimulation of the dorsal lateral geniculate nucleus (LGNd). Whereas most CT neurons had either complex (59%) or motion/uniform (15%) receptive fields, we also found CT neurons with simple (9%) and concentric (4%) receptive fields. Most complex CT cells were broadly tuned to both stimulus orientation and velocity, but only 41% of these cells were directionally selective. We could elicit no visual responses from 6% of CT cells, and these cells had significantly lower conduction velocities than visually responsive CT cells. The median spontaneous firing rates for all classes of CT neurons were 4-8 spikes/s. CG neurons had primarily simple (60%) and concentric (9%) receptive fields, and none of these cells had complex receptive fields. CG simple cells were more narrowly tuned to both stimulus orientation and velocity than were complex CT cells, and most (85%) were directionally selective. Axonal conduction velocities of CG neurons (mean = 1.2 m/s) were much lower than those of CT neurons (mean = 6.4 m/s), and CG neurons that were visually unresponsive (23%) had lower axonal conduction velocities than did visually responsive CG neurons. Some visually unresponsive CG neurons (14%) responded with saccadic eye movements. The median spontaneous firing rates for all classes of CG neurons were less than 1 spike/s. All neurons synaptically activated via LGNd stimulation at latencies of less than 2.0 ms had receptive fields that were not orientation selective (89% motion/uniform, 11% concentric), whereas most cells with orientation-selective receptive fields had considerably longer synaptic latencies. Most short-latency motion/uniform neurons responded to electrical stimulation of the LGNd (and visual area II) with a high-frequency burst (500-900 Hz) of three or more spikes. Action potentials of these neurons were of short duration, thresholds of synaptic activation were low, and spontaneous firing rates were the highest seen in rabbit visual cortex. These properties are similar to those reported for interneurons in several regions in mammalian central nervous system. Nonvisual sensory stimuli that resulted in electroencephalographic arousal (hippocampal theta activity) had a profound effect on the visual responses of many visual cortical neurons.(ABSTRACT TRUNCATED AT 400 WORDS)


1993 ◽  
Vol 10 (3) ◽  
pp. 499-509 ◽  
Author(s):  
W.R. Levick ◽  
L.N. Thibos

AbstractReceptive fields of ganglion cells have been studied in cats possessing a chronic, arrested lesion of central retinal degeneration. Lesions were characterized by an ophthalmoscopically sharp border separating apparently normal retina from the region of the lesion. Under direct ophthalmoscopic guidance, a succession of recordings was obtained from ganglion cells having cell bodies at various positions relative to the lesion. Cells located more than 1 deg outside the ophthalmoscopic border had normal visual sensitivity as assessed by area-threshold experiments. Inside the lesion cells within 1 deg of the border had reduced sensitivity which often precluded functional classification by the usual visual tests. Ganglion cells located more than 1 deg inside the border of large lesions were blind and some had abnormal patterns of maintained discharge of action potentials. Nevertheless, the antidromic latencies of these blind cells fell into the familiar conduction groups (T1/T2/T3). Receptive-field maps of cells near the border of the lesion often appeared truncated, with the missing portion of the field covered by the lesion. These observations were consistent with the abnormal form of area-thresholdcurves. Altlhough the responsiveness of cells near the lesion was abnormally low for grating stimuli, cutoff spatial frequency and orientation bias of these cells were within normal limits.


1997 ◽  
Vol 14 (6) ◽  
pp. 1153-1165 ◽  
Author(s):  
Stewart A. Bloomfield ◽  
Daiyan Xin

AbstractRecent studies have shown that amacrine and ganglion cells in the mammalian retina are extensively coupled as revealed by the intercellular movement of the biotinylated tracers biocytin and Neurobiotin. These demonstrations of tracer coupling suggest that electrical networks formed by proximal neurons (i.e. amacrine and ganglion cells) may underlie the lateral propagation of signals across the inner retina. We studied this question by comparing the receptive-field size, dendritic-field size, and extent of tracer coupling of amacrine and ganglion cells in the dark-adapted, supervised, isolated retina eyecup of the rabbit. Our results indicate that while the center-receptive fields of proximal neurons are approximately 15% larger than their corresponding dendritic diameters, this slight difference can be explained by factors other than electrical coupling such as tissue shrinkage associated with histological processing. However, the extent of tracer coupling of amacrine and ganglion cells was, on average, about twice the size of the corresponding receptive fields. Thus, the receptive field of an individual proximal neuron matched far more closely to its dendritic diameter than to the size of the tracer-coupled network of cells to which it belonged. The exception to this rule was the AII amacrine cells for which center-receptive fields were 2–3 times the size of their dendritic diameters but matched closely to the size of the tracer-coupled arrays. Thus, with the exception of AII cells, our data indicate that tracer coupling between proximal neurons is not associated with an enlargement of their receptive fields. Our results, then, provide no evidence for electrical coupling or, at least, indicate that extensive lateral spread of visual signals does not occur in the proximal mammalian retina.


1986 ◽  
Vol 56 (4) ◽  
pp. 907-933 ◽  
Author(s):  
M. A. Kirby ◽  
P. D. Wilson

Relay cells in the lateral geniculate nucleus (LGN) of the North American opossum were classified as types 1, 2, and 3 on the basis of their receptive field properties and afferent latencies to optic nerve (ON) and optic chiasm (OX) stimulation and antidromic latencies to stimulation of cortex. Type 1 and type 3 cells gave transient responses and type 2 cells gave sustained responses to appropriate standing contrast in the receptive field center. The differences in response pattern were quantified with a phasic-tonic index (PTI); the PTI values for type 2 cells (PTI less than 63) did not overlap those for type 1 cells (PTI greater than 68) or type 3 cells (PTI greater than 80). With a homogeneous field (1.3 cd/m2), the maintained discharge rates (spikes/s) of type 3 cells (less than 1-11) were significantly lower than those of type 1 cells (3-23) and of type 2 cells (1-22). For all type 2 cells tested with a counterphased sine-wave grating, a null position of the grating was found and the cells were classified as linear. The type 1 and type 3 cells tested were nonlinear (i.e., exhibited excitatory doubling and did not have a null grating position). The maximum velocity of movement that reliably elicited responses (cut-off velocity) was low for type 3 cells (mean = 29.1 degrees/s) and relatively high for type 1 cells (mean = 70.3 degrees/s). Cut-off velocities for type 2 cells (mean = 61.2 degrees/s) were slightly lower than for type 1 cells. Type 1 cells had relatively short afferent (ON and OX) latencies, fast afferent conduction velocities, and short antidromic (cortex) latencies; type 2 cells had intermediate afferent and antidromic latencies and intermediate afferent conduction velocities; and type 3 cells had relatively long afferent and antidromic latencies and slow afferent conduction velocities. The receptive field center diameters were similar for type 1 (4.2-25.5 degrees; mean = 11.4 degrees) and type 3 cells (2.8-23.7 degrees; mean = 11.0 degrees), whereas the receptive field centers for type 2 cells (2.9-15.1 degrees; mean = 6.9 degrees) were significantly smaller. The majority of type 1 (66.7%) and type 3 cells (63.3%) had on-center receptive fields, whereas the proportion of on-center fields was even greater for type 2 cells (83.0%). Only a few of the cells encountered in the opossum LGN (6%) had on-off receptive fields, and a portion of these could not be shown to be relay cells.(ABSTRACT TRUNCATED AT 400 WORDS)


1988 ◽  
Vol 1 (4) ◽  
pp. 377-385 ◽  
Author(s):  
Michael W. Levine ◽  
Roger P. Zimmerman

AbstractA new form of receptive field map, the response-component map, was developed to identify points within a receptive field that produce similar response patterns. The fields were probed with discretely flashed small spots of light. The magnitudes of the responses to stimulus onset and to stimulus offset elicited at each point were represented on the map by a vector radiating from the position representing the location of that point. Thus, response-component maps preserve the spatial distributions of responsivity and temporal nonlinearities. Points with similar response patterns were identified from a scatterplot in which the response at each spatial position was located in a plane representing the angles of the response-component vectors. Points with similar response characteristics that were also spatially contiguous were considered as a distinct response subregion within the receptive field.Barely 10% of the receptive fields of goldfish ganglion cells mapped with this technique proved as simple as the traditional concentric field described for retinal cells. In at least 17% of the cases, the field showed three concentric rings, with a very small “inner center” within the center of the field. In at least 50% of the cases, response subregions of different type lay side by side, rather than in a concentric configuration. Some subregions could be differentiated by the relative strengths of the responses to onset and offset of the stimulus spot, supporting the hypothesis that a push-pull system generates ganglion cell responses. Subregions were evident in successive mappings of the same cell, demonstrating they are not due to the vagaries of individual responses. They probably represent the spatial domains (or their intersections) of individual interneurons distal to the retinal ganglion cells. It is possible that position within the receptive field may be coded by the temporal pattern of the responses.


1978 ◽  
Vol 41 (4) ◽  
pp. 948-962 ◽  
Author(s):  
A. G. Leventhal ◽  
H. V. Hirsch

1. Receptive-field properties of neurons in the different layers of the visual cortex of normal adult cats were analyzed quantitatively. Neurons were classified into one of two groups: 1) S-cells, which have discrete on- and/or off-regions in their receptive fields and possess inhibitory side bands; 2) C-cells, which do not have discrete on- and off-regions in their receptive fields but display an on-off response to flashing stimuli. Neurons of this type rarely display side-band inhibition. 2. As a group, S-cells display lower relative degrees of binocularity and are more selective for stimulus orientation than C-cells. In addition, within a given lamina the S-cells have smaller receptive fields, lower cutoff velocities, lower peak responses to visual stimulation, and lower spontaneous activity than do the C-cells. 3. S-cells in all layers of the cortex display similar orientation sensitivities, mean spontaneous discharge rates, peak response to visual stimulation, and degrees of binocularity. 4. Many of the receptive-field properties of cortical cells vary with laminar location. Receptive-field sizes and cutoff velocities of S-cells and of C-cells are greater in layers V and VI than in layers II-IV. For S-cells, preferred velocities are also greater in layers V and VI than in layers II-IV. Furthermore, C-cells in layers V and VI display high mean spontaneous discharge rates, weak orientation preferences, high relative degrees of binocularity, and higher peak responses to visual stimulation when compared to C-cells in layers II and III. 5. The receptive-field properties of cells in layers V-VI of the striate cortex suggest that most neurons that have their somata in these laminae receive afferents from LGNd Y-cells. Hence, our results suggest that afferents from LGNd Y-cells may play a major part in the cortical control of subcortical visual functions.


Sign in / Sign up

Export Citation Format

Share Document