BOUNDARY PROPERTIES OF ANALYTIC FUNCTIONS REPRESENTABLE AS INTEGRALS OF CAUCHY TYPE

1971 ◽  
Vol 13 (3) ◽  
pp. 419-434
Author(s):  
G C Tumarkin
1954 ◽  
Vol 61 (1) ◽  
pp. 186-199 ◽  
Author(s):  
F. Bagemihl ◽  
W. Seidel

2014 ◽  
Vol 22 (2) ◽  
pp. 109-120
Author(s):  
Özkan Karaman

AbstractIn this paper, using the boundary properties of the analytic functions we investigate the structure of the discrete spectrum of the boundary value problem (0.1)$$\matrix{\hfill {iy_1^\prime + q_1 \left(x \right)y_2 - \lambda y_1 = \varphi _1 \left(x \right)\;\;} & \hfill {} \cr \hfill {- iy_2^\prime + q_2 \left(x \right)y_1 - \lambda y_2 = \varphi _2 \left(x \right),} & \hfill {x \in R_ + } \cr }$$ and the condition (0.2)$$\left({a_1 \lambda + b_1 } \right)y_2 \left({0,\lambda } \right) - \left({a_2 \lambda + b_2 } \right)y_1 \left({0,\lambda } \right) = 0$$ where q1,q2, φ1, φ2 are complex valued functions, ak ≠ 0, bk ≠ 0, k = 1, 2 are complex constants and λ is a spectral parameter. In this article, we investigate the spectral singularities and eigenvalues of (0.1), (0.2) using the boundary uniqueness theorems of analytic functions. In particular, we prove that the boundary value problem (0.1), (0.2) has a finite number of spectral singularities and eigenvalues with finite multiplicities under the conditions, $$\matrix{{\mathop {\sup }\limits_{x \in R_ + } \left[ {\left| {\varphi _k \left(x \right)} \right|\exp \left({\varepsilon x^\delta } \right)} \right] < \infty ,\;\;\;k = 1.2} \hfill \cr {\mathop {\sup }\limits_{x \in R_ + } \left[ {\left| {q_k \left(x \right)} \right|\exp \left({\varepsilon x^\delta } \right)} \right] < \infty ,\;\;\;k = 1.2} \hfill \cr }$$ for some ε > 0, ${1 \over 2} < \delta < 1$


Sign in / Sign up

Export Citation Format

Share Document