rational approximations
Recently Published Documents


TOTAL DOCUMENTS

454
(FIVE YEARS 36)

H-INDEX

31
(FIVE YEARS 3)

2021 ◽  
Vol 5 (4) ◽  
pp. 267
Author(s):  
José Daniel Colín-Cervantes ◽  
Carlos Sánchez-López ◽  
Rocío Ochoa-Montiel ◽  
Delia Torres-Muñoz ◽  
Carlos Manuel Hernández-Mejía ◽  
...  

This paper deals with the study and analysis of several rational approximations to approach the behavior of arbitrary-order differentiators and integrators in the frequency domain. From the Riemann–Liouville, Grünwald–Letnikov and Caputo basic definitions of arbitrary-order calculus until the reviewed approximation methods, each of them is coded in a Maple 18 environment and their behaviors are compared. For each approximation method, an application example is explained in detail. The advantages and disadvantages of each approximation method are discussed. Afterwards, two model order reduction methods are applied to each rational approximation and assist a posteriori during the synthesis process using analog electronic design or reconfigurable hardware. Examples for each reduction method are discussed, showing the drawbacks and benefits. To wrap up, this survey is very useful for beginners to get started quickly and learn arbitrary-order calculus and then to select and tune the best approximation method for a specific application in the frequency domain. Once the approximation method is selected and the rational transfer function is generated, the order can be reduced by applying a model order reduction method, with the target of facilitating the electronic synthesis.


Author(s):  
Michael Vielhaber ◽  
Mónica del Pilar Canales Chacón ◽  
Sergio Jara Ceballos

AbstractWe introduce rational complexity, a new complexity measure for binary sequences. The sequence s ∈ Bω is considered as binary expansion of a real fraction $s \equiv {\sum }_{k\in \mathbb {N}}s_{k}2^{-k}\in [0,1] \subset \mathbb {R}$ s ≡ ∑ k ∈ ℕ s k 2 − k ∈ [ 0 , 1 ] ⊂ ℝ . We compute its continued fraction expansion (CFE) by the Binary CFE Algorithm, a bitwise approximation of s by binary search in the encoding space of partial denominators, obtaining rational approximations r of s with r → s. We introduce Feedback in$\mathbb {Q}$ ℚ Shift Registers (F$\mathbb {Q}$ ℚ SRs) as the analogue of Linear Feedback Shift Registers (LFSRs) for the linear complexity L, and Feedback with Carry Shift Registers (FCSRs) for the 2-adic complexity A. We show that there is a substantial subset of prefixes with “typical” linear and 2-adic complexities, around n/2, but low rational complexity. Thus the three complexities sort out different sequences as non-random.


2021 ◽  
Vol 15 (2) ◽  
pp. 461-513
Author(s):  
Zhizhong Huang

2021 ◽  
Author(s):  
philip olivier

<div> <div> <div> <p>This paper is motivated by the need in certain engineering contexts to construct approximations for irrational functions in the complex variable z. The main mathematical tool that will be used is a special continued fraction expansion that cause the rational approximant to collocate the irrational function at specific important values of z. This paper introduces two theorems that facilitate the construction of the rational approxima- tion. </p> </div> </div> </div>


2021 ◽  
Author(s):  
philip olivier

<div> <div> <div> <p>This paper is motivated by the need in certain engineering contexts to construct approximations for irrational functions in the complex variable z. The main mathematical tool that will be used is a special continued fraction expansion that cause the rational approximant to collocate the irrational function at specific important values of z. This paper introduces two theorems that facilitate the construction of the rational approxima- tion. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document