BOUNDARY PROPERTIES OF ANALYTIC FUNCTIONS WITH GAP POWER SERIES

1970 ◽  
Vol 21 (2) ◽  
pp. 247-256 ◽  
Author(s):  
J. M. ANDERSON
1991 ◽  
Vol 57 (1) ◽  
pp. 61-70 ◽  
Author(s):  
H�kan Hedenmalm

1954 ◽  
Vol 61 (1) ◽  
pp. 186-199 ◽  
Author(s):  
F. Bagemihl ◽  
W. Seidel

2017 ◽  
Vol 69 (02) ◽  
pp. 408-433 ◽  
Author(s):  
Igor Klep ◽  
Špela Špenko

Abstract This paper concerns free function theory. Freemaps are free analogs of analytic functions in several complex variables and are defined in terms of freely noncommuting variables. A function of g noncommuting variables is a function on g-tuples of square matrices of all sizes that respects direct sums and simultaneous conjugation. Examples of such maps include noncommutative polynomials, noncommutative rational functions, and convergent noncommutative power series. In sharp contrast to the existing literature in free analysis, this article investigates free maps with involution, free analogs of real analytic functions. To get a grip on these, techniques and tools from invariant theory are developed and applied to free analysis. Here is a sample of the results obtained. A characterization of polynomial free maps via properties of their finite-dimensional slices is presented and then used to establish power series expansions for analytic free maps about scalar and non-scalar points; the latter are series of generalized polynomials for which an invarianttheoretic characterization is given. Furthermore, an inverse and implicit function theorem for free maps with involution is obtained. Finally, with a selection of carefully chosen examples it is shown that free maps with involution do not exhibit strong rigidity properties enjoyed by their involutionfree counterparts.


2005 ◽  
Vol 22 (2) ◽  
pp. 103-119 ◽  
Author(s):  
J. Sánchez-Reyes ◽  
J.M. Chacón

2021 ◽  
Vol 9 (1) ◽  
pp. 56-63
Author(s):  
O. Skaskiv ◽  
A. Kuryliak

By $\mathcal{A}^2$ denote the class of analytic functions of the formBy $\mathcal{A}^2$ denote the class of analytic functions of the form$f(z)=\sum_{n+m=0}^{+\infty}a_{nm}z_1^nz_2^m,$with {the} domain of convergence $\mathbb{T}=\{z=(z_1,z_2)\in\mathbb C^2\colon|z_1|<1,\ |z_2|<+\infty\}=\mathbb{D}\times\mathbb{C}$ and$\frac{\partial}{\partial z_2}f(z_1,z_2)\not\equiv0$ in $\mathbb{T}.$ In this paper we prove some analogue of Wiman's inequalityfor analytic functions $f\in\mathcal{A}^2$. Let a function $h\colon \mathbb R^2_+\to \mathbb R_+$ be such that$h$ is nondecreasing with respect to each variables and $h(r)\geq 10$ for all $r\in T:=(0,1)\times (0,+\infty)$and $\iint_{\Delta_\varepsilon}\frac{h(r)dr_1dr_2}{(1-r_1)r_2}=+\infty$ for some $\varepsilon\in(0,1)$, where $\Delta_{\varepsilon}=\{(t_1, t_2)\in T\colon t_1>\varepsilon,\ t_2> \varepsilon\}$.We say that $E\subset T$ is a set of asymptotically  finite $h$-measure on\ ${T}$if $\nu_{h}(E){:=}\iint\limits_{E\cap\Delta_{\varepsilon}}\frac{h(r)dr_1dr_2}{(1-r_1)r_2}<+\infty$ for some $\varepsilon>0$. For $r=(r_1,r_2)\in T$ and a function $f\in\mathcal{A}^2$ denote\begin{gather*}M_f(r)=\max \{|f(z)|\colon  |z_1|\leq r_1,|z_2|\leq r_2\},\\mu_f(r)=\max\{|a_{nm}|r_1^{n} r_2^{m}\colon(n,m)\in{\mathbb{Z}}_+^2\}.\end{gather*}We prove the following theorem:{\sl Let $f\in\mathcal{A}^2$. For every $\delta>0$ there exists a set $E=E(\delta,f)$ of asymptotically  finite $h$-measure on\ ${T}$ such that for all $r\in (T\cap\Delta_{\varepsilon})\backslash E$ we have \begin{equation*} M_f(r)\leq\frac{h^{3/2}(r)\mu_f(r)}{(1-r_1)^{1+\delta}}\ln^{1+\delta} \Bigl(\frac{h(r)\mu_f(r)}{1-r_1}\Bigl)\cdot\ln^{1/2+\delta}\frac{er_2}{\varepsilon}. \end{equation*}}


1967 ◽  
Vol 17 (5) ◽  
pp. 407-419
Author(s):  
J. McMillan

Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 1041 ◽  
Author(s):  
Gangadharan Murugusundaramoorthy ◽  
Teodor Bulboacă

Using the operator L c a defined by Carlson and Shaffer, we defined a new subclass of analytic functions ML c a ( λ ; ψ ) defined by a subordination relation to the shell shaped function ψ ( z ) = z + 1 + z 2 . We determined estimate bounds of the four coefficients of the power series expansions, we gave upper bound for the Fekete–SzegőSzegő functional and for the Hankel determinant of order two for f ∈ ML c a ( λ ; ψ ) .


2014 ◽  
Vol 22 (2) ◽  
pp. 109-120
Author(s):  
Özkan Karaman

AbstractIn this paper, using the boundary properties of the analytic functions we investigate the structure of the discrete spectrum of the boundary value problem (0.1)$$\matrix{\hfill {iy_1^\prime + q_1 \left(x \right)y_2 - \lambda y_1 = \varphi _1 \left(x \right)\;\;} & \hfill {} \cr \hfill {- iy_2^\prime + q_2 \left(x \right)y_1 - \lambda y_2 = \varphi _2 \left(x \right),} & \hfill {x \in R_ + } \cr }$$ and the condition (0.2)$$\left({a_1 \lambda + b_1 } \right)y_2 \left({0,\lambda } \right) - \left({a_2 \lambda + b_2 } \right)y_1 \left({0,\lambda } \right) = 0$$ where q1,q2, φ1, φ2 are complex valued functions, ak ≠ 0, bk ≠ 0, k = 1, 2 are complex constants and λ is a spectral parameter. In this article, we investigate the spectral singularities and eigenvalues of (0.1), (0.2) using the boundary uniqueness theorems of analytic functions. In particular, we prove that the boundary value problem (0.1), (0.2) has a finite number of spectral singularities and eigenvalues with finite multiplicities under the conditions, $$\matrix{{\mathop {\sup }\limits_{x \in R_ + } \left[ {\left| {\varphi _k \left(x \right)} \right|\exp \left({\varepsilon x^\delta } \right)} \right] < \infty ,\;\;\;k = 1.2} \hfill \cr {\mathop {\sup }\limits_{x \in R_ + } \left[ {\left| {q_k \left(x \right)} \right|\exp \left({\varepsilon x^\delta } \right)} \right] < \infty ,\;\;\;k = 1.2} \hfill \cr }$$ for some ε > 0, ${1 \over 2} < \delta < 1$


Sign in / Sign up

Export Citation Format

Share Document