scholarly journals New moduli components of rank 2 bundles on projective space

2021 ◽  
Vol 212 (11) ◽  
Author(s):  
Charles Almeida ◽  
Marcos Jardim ◽  
Aleksandr Sergeevich Tikhomirov ◽  
Sergei Aleksandrovich Tikhomirov

2020 ◽  
Vol 126 (3) ◽  
pp. 493-496
Author(s):  
David Stapleton

The point of this paper is to give a short, direct proof that rank $2$ toric vector bundles on $n$-dimensional projective space split once $n$ is at least $3$. This result is originally due to Bertin and Elencwajg, and there is also related work by Kaneyama, Klyachko, and Ilten-Süss. The idea is that, after possibly twisting the vector bundle, there is a section which is a complete intersection.



1981 ◽  
Vol 84 ◽  
pp. 9-30 ◽  
Author(s):  
G. Pete Wever

Barth and others [1], [2], [5] have begun the study of stable algebraic vector bundles of rank 2 on projective space. Maruyama [7] has shown that stable rank 2 bundles have a variety of moduli which is the finite union of quasi-projective varieties.



1994 ◽  
Vol 17 (2) ◽  
pp. 321-335
Author(s):  
Shigeharu TAKAYAMA
Keyword(s):  
Rank 2 ◽  


2015 ◽  
Vol 218 ◽  
pp. 1-28
Author(s):  
Andrew Strangeway

AbstractWe present a reconstruction theorem for Fano vector bundles on projective space which recovers the small quantum cohomology for the projectivization of the bundle from a small number of low-degree Gromov-Witten invariants. We provide an extended example in which we calculate the quantum cohomology of a certain Fano 9-fold and deduce from this, using the quantum Lefschetz theorem, the quantum period sequence for a Fano 3-fold of Picard rank 2 and degree 24. This example is new, and is important for the Fanosearch program.



2019 ◽  
Vol 357 (2) ◽  
pp. 209-211
Author(s):  
Duo Li ◽  
Yinbang Lin ◽  
Xuanyu Pan
Keyword(s):  
Rank 2 ◽  


2019 ◽  
Vol 60 (2) ◽  
pp. 343-358 ◽  
Author(s):  
A. S. Tikhomirov ◽  
S. A. Tikhomirov ◽  
D. A. Vassiliev
Keyword(s):  
Rank 2 ◽  


2003 ◽  
Vol 14 (10) ◽  
pp. 1097-1120 ◽  
Author(s):  
WEI-PING LI ◽  
ZHENBO QIN

In this paper, we apply the technique of chamber structures of stability polarizations to construct the full moduli space of rank-2 stable sheaves with certain Chern classes on Calabi–Yau manifolds which are anti-canonical divisor of ℙ1×ℙn or a double cover of ℙ1×ℙn. These moduli spaces are isomorphic to projective spaces. As an application, we compute the holomorphic Casson invariants defined by Donaldson and Thomas.



1992 ◽  
Vol 110 (1) ◽  
pp. 615-626 ◽  
Author(s):  
Zhenbo Qin


Sign in / Sign up

Export Citation Format

Share Document