A tetranuclear carbonyl fluoro rhenium(I) cluster, [Re(CO)3F]4,4H2O

1981 ◽  
Vol 34 (4) ◽  
pp. 737 ◽  
Author(s):  
E Horn ◽  
MR Snow

The title compound has been prepared from Re(CO)5Br by a bromide-abstraction reaction with silver fluoride. It completes the series of known halide clusters of the type [Re(CO)3X]4 (where X = halide). The crystals are tetragonal, space group 14, with a 11.716(5), c 8.988(3) �, and Z 2. The structure was refined by full-matrix least-squares to an R value of 0.027 for 1380 observed reflections. The molecules are cubane-type clusters of Re(CO)3 groups at one set of corners interpenetrated with fluorine atoms at the other set. The clusters exhibit the molecular symmetry 43m. Each of the fluorine atoms is involved in μ3 type bridging with the rhenium atoms at an average bonding distance of 2.200(5) �. The clusters are held together by hydrogen bonding of fluoride to water molecules.

1978 ◽  
Vol 31 (5) ◽  
pp. 999 ◽  
Author(s):  
CL Raston ◽  
AH White ◽  
JK Yandell

The crystal structure of the title compound, NH4 [Co(NH3)4(SO3)2],3H2O, has been redetermined using diffractometer data at 295 K and refined by full-matrix least squares to a residual of 0.056 for 2068 'observed' reflections. Crystals are orthorhombic, P212121, a 10.978(4), b 17.552(7), c 6.828(3)Ǻ, Z 4. The redetermined structure provides accurate structural data for the cobalt environment; as well, it locates all hydrogen atoms and defines cations and water molecules un- ambiguously. Co-S are 2.224(2), 2.221(2) Ǻ. Co-N (trans to S) (1.993(6), 2.023(6) Ǻ) are longer than the mutually trans Co-N (1.970(7), 1.977(6) Ǻ); the difference in the former is a consequence of lattice hydrogen bonding.


1990 ◽  
Vol 68 (8) ◽  
pp. 1277-1282 ◽  
Author(s):  
Ivor Wharf ◽  
Michel G. Simard ◽  
Henry Lamparski

Tetrakis(p-methylsulphonylphenyl)tin(IV) and tetrakis(p-methylsulphinylphenyl)tin(IV) n-hydrate have been prepared and their spectra (ir 1350–400 cm−1; nmr, 1H, 13C, 119Sn) and X-ray crystal structures are reported. The first compound is monoclinic, space group C2/c, Z = 4, with a = 21.589(6), b = 6.207(3), c = 22.861(11) Å, β = 93.80(3)° (22 °C); the structure was solved by the direct method and refined by full-matrix least squares calculations to R = 0.043 for 2755 observed reflections. It has 2 molecular symmetry with the methyl group and one oxygen atom completely disordered in both CH3S(O2) groups in the asymmetric unit. The second compound is tetragonal, space group P42/n, Z = 2, with a = b = 15.408(6), c = 6.379(2) Å (−100 °C); the structure was solved by the Patterson method and refined by full-matrix least squares calculations to R = 0.060 for 1209 observed reflections. It has [Formula: see text] molecular symmetry with the whole asymmetric unit disordered. Water molecules occupy positions on parallel 42 axes but molecular packing requirements prevent all sites having 100% occupancy giving n ~ 1 for the hydrate. Keywords: Tetra-aryltins, crystal structures, sulphone, sulphoxide, hydrogen-bonding.


2012 ◽  
Vol 67 (1) ◽  
pp. 5-10
Author(s):  
Guido J. Reiss ◽  
Martin van Megen

The reaction of bipyridine with hydroiodic acid in the presence of iodine gave two new polyiodide-containing salts best described as 4,4´-bipyridinium bis(triiodide), C10H10N2[I3]2, 1, and bis(4,4´-bipyridinium) diiodide bis(triiodide) tris(diiodine) solvate dihydrate, (C10H10N2)2I2[I3]2 · 3 I2 ·2H2O, 2. Both compounds have been structurally characterized by crystallographic and spectroscopic methods (Raman and IR). Compound 1 is composed of I3 − anions forming one-dimensional polymers connected by interionic halogen bonds. These chains run along [101] with one crystallographically independent triiodide anion aligned and the other triiodide anion perpendicular to the chain direction. There are no classical hydrogen bonds present in 1. The structure of 2 consists of a complex I144− anion, 4,4´-bipyridinium dications and hydrogen-bonded water molecules in the ratio of 1 : 2 : 2. The I144− polyiodide anion is best described as an adduct of two iodide and two triiodide anions and three diiodine molecules. Two 4,4´-bipyridinium cations and two water molecules form a cyclic dimer through N-H· · ·O hydrogen bonds. Only weak hydrogen bonding is found between these cyclic dimers and the polyiodide anions.


2006 ◽  
Vol 62 (4) ◽  
pp. m690-m692
Author(s):  
Ki-Young Choi ◽  
Kyu-Chul Lee ◽  
Han-Hyoung Lee ◽  
Jaejung Ko ◽  
Won-Sik Han

In the title compound, [Cu3(C10H13N2O2)2Cl(ClO4)3(H2O)3]·2H2O, the Cu atoms exhibit octahedral, square-pyramidal and square-planar coordination environments, and they are linked by carboxylate groups to form a trinuclear structure. The five water molecules participate in intra- and intermolecular hydrogen bonding.


IUCrData ◽  
2018 ◽  
Vol 3 (8) ◽  
Author(s):  
Antoine Blaise Kama ◽  
Mamadou Sidibe ◽  
Cheikh Abdoul Khadre Diop ◽  
Florent Blanchard

The title compound, [Co(C6H6NO3S)2(H2O)2] n , was obtained from a mixture of Co(NO3)2·6H2O and a previously synthesized salt, namely CyNH3·NH2PhSO3, in a 1:1 ratio (Cy = cyclohexyl; Ph = phenyl). The crystal structure consists of a three-dimensional supramolecular framework, in which polymeric layers are interconnected via N—H...O and O—H...O hydrogen bonding. The polymeric layers are formed by an interconnection of neighbouring cobalt(II) cations via NH2PhSO3 − bridges. Each cobalt(II) cation is surrounded by four NH2PhSO3 − moieties and two water molecules, leading to a distorted octahedral environment.


1979 ◽  
Vol 32 (2) ◽  
pp. 301 ◽  
Author(s):  
V Diakiw ◽  
TW Hambley ◽  
DL Kepert ◽  
CL Raston ◽  
AH White

The crystal structure of the title compound, Ca(C6H2N307)2,5H2O, has been determined by single-crystal X-ray diffraction at 295(1) K and refined by least squares to a residual of 0.049 for 1513 'observed' reflections. Crystals are orthorhombic, Pmab, a 24.169(6), b l0.292(7), c 8.554(2) �, Z 4. The stereochemistry about the calcium has not been observed previously for the system [M(bidentate)2- (unidentate)4]; in the present structure, the calcium is coordinated by a pair of bidentate picrate ligands and the four water molecules in an array in which three of the water molecules occupy a triangular face of a square antiprism, the overall array having m symmetry. The remaining water molecule occupies a lattice site with no close interaction with the other species.


2014 ◽  
Vol 70 (6) ◽  
pp. m227-m228 ◽  
Author(s):  
Aymen Yangui ◽  
Walid Rekik ◽  
Slim Elleuch ◽  
Younes Abid

In the title compound, [Ni(C3H10N2)3]2[Ni(C3H10N2)2(H2O)2]Br6·2H2O, one Ni2+cation, located on an inversion centre, is coordinated by four N atoms from two ligands and by two water O atoms. The other Ni2+cation, located in a general position, is coordinated by six N atoms from three ligands. In both cases, the Ni2+cation has an octahedral coordination environment. The overall structural cohesion is ensured by three types of hydrogen bonds, N—H...Br, O—H...Br and O—H...O, which connect the two types of complex cations, the bromide counter-anions and the lattice water molecules into a three-dimensional network.


1984 ◽  
Vol 37 (1) ◽  
pp. 35 ◽  
Author(s):  
E Horn ◽  
MR Snow

Bromide abstraction from the complexes Re(CO)3L2Br (where L = SbPh3 and L2 = bpy, dpe, tmen)* by AgF2H gives the corresponding fluoro compounds Re(CO)3L2F. Mass spectra and structural data show that the fluoride in these complexes is coordinated to the metal. The structures of Re(CO)3(tmen)F and [Re(CO)3(tmen)F]2H.HOBF3 are reported here. Crystals of Re(CO)3(tmen)F are monoclinic, space group P21/c, with a 8.202(2), b 13.115(9), c 12.048(4) � and β 102 24(3)�. A full-matrix least-squares refinement by using the absorption corrected data gave a conventional R value of 0.041. [Re(CO)3(tmen)F]2H.HOBF3 also crystallizes in the space group P21/c. The lattice parameters are: a 17.495(2), b 10.772(2), c 15.447(1) � and β ( 101.409(8)�. The final R value of a blocked least-squares calculation converged at 0.061. In these two complexes the simple Re-F distance is 2.040(4) �, in Re(CO)3(tmen)F. The Re-F distance is increased to 2.236(10)�, as a result of hydrogen bonding between the fluoride and HOBF3 in the latter compound.


2006 ◽  
Vol 62 (4) ◽  
pp. m796-m798 ◽  
Author(s):  
Zerrin Heren ◽  
Cem Cüneyt Ersanlı ◽  
Cem Keser ◽  
Nazan Ocak Ískeleli

The crystal structure of the title compound, [Co(C6H4NO2)2(H2O)2]·2H2O, has been reinvestigated with improved precision [previous reports: Chang et al. (1972). J. Coord. Chem. 2, 31–34; Lumme et al. (1969). Suom. Kemistil. B, 42, 270]. In the title compound, the Co atom is located on an inversion center and its coordination can be described as slightly distorted octahedral, equatorially trans-coordinated by two N and O atoms of two picolinate ligands and axially coordinated by two O atoms of the water molecules. Intermolecular O—H...O and C—H...O hydrogen-bonding interactions result in the formation of an intricate three-dimensional network.


2014 ◽  
Vol 70 (5) ◽  
pp. m170-m171
Author(s):  
Fei-Lin Yang ◽  
Dan Yang

The asymmetric unit of the title compound, {[Mn3{W(CN)8}2(C16H16N2)3(C3H7NO)3(CH3OH)3]·2H2O}n, consists of three [Mn(N,N-dimethylformamide)(methanol)(3,4,7,8-tetramethyl-1,10-phenanthroline)]2+cations, two [W(CN)8]3−anions and two water molecules. Each water molecule is disordered over three sets of sites, with a refined occupancy ratio of 0.310 (9):0.275 (9):0.415 (9) for one molecule and 0.335 (9):0.288 (9):0.377 (9) for the other molecule. The MnIIatoms exhibit a distorted octahedral geometry, while the WVatoms adopt a distorted square-antiprismatic geometry. The MnIIand WVatoms are linked alternatively through cyanide groups, forming a tetranuclear 12-atom rhombic metallacycle. Adjacent metallacycles are further connected by μ2-bridging cyanide anions, generating a 3,2-chain structure running parallel to [101]. Interchain π–π interactions are observed [centroid–centroid distances = 3.763 (3) and 3.620 (2) Å].


Sign in / Sign up

Export Citation Format

Share Document