Studies in aryltin chemistry. Part 6. Crystal and molecular structures of tetra(p-methylsulphonylphenyl)tin(IV) and tetra(p-methylsulphinylphenyl)tin(IV) monohydrate

1990 ◽  
Vol 68 (8) ◽  
pp. 1277-1282 ◽  
Author(s):  
Ivor Wharf ◽  
Michel G. Simard ◽  
Henry Lamparski

Tetrakis(p-methylsulphonylphenyl)tin(IV) and tetrakis(p-methylsulphinylphenyl)tin(IV) n-hydrate have been prepared and their spectra (ir 1350–400 cm−1; nmr, 1H, 13C, 119Sn) and X-ray crystal structures are reported. The first compound is monoclinic, space group C2/c, Z = 4, with a = 21.589(6), b = 6.207(3), c = 22.861(11) Å, β = 93.80(3)° (22 °C); the structure was solved by the direct method and refined by full-matrix least squares calculations to R = 0.043 for 2755 observed reflections. It has 2 molecular symmetry with the methyl group and one oxygen atom completely disordered in both CH3S(O2) groups in the asymmetric unit. The second compound is tetragonal, space group P42/n, Z = 2, with a = b = 15.408(6), c = 6.379(2) Å (−100 °C); the structure was solved by the Patterson method and refined by full-matrix least squares calculations to R = 0.060 for 1209 observed reflections. It has [Formula: see text] molecular symmetry with the whole asymmetric unit disordered. Water molecules occupy positions on parallel 42 axes but molecular packing requirements prevent all sites having 100% occupancy giving n ~ 1 for the hydrate. Keywords: Tetra-aryltins, crystal structures, sulphone, sulphoxide, hydrogen-bonding.

1998 ◽  
Vol 76 (4) ◽  
pp. 389-399 ◽  
Author(s):  
Wolfgang Kliegel ◽  
Jörg Metge ◽  
Steven J Rettig ◽  
James Trotter

The synthesis of a series of C-aryl-N-[2-(hydroxymethyl)phenyl]nitrones, 5 (that can also exist under certain conditions as isomeric 1-hydroxy-2-aryl-1,2-dihydro-4H-3,1-benzoxazines, 8), via 2-(hydroxyamino)benzyl alcohol, 4, and their subsequent reactions with oxybis(diphenylborane), (Ph2B)2O, leading to the 5-(arylmethylene)-7,7-diphenyl-6,8-dioxa- 5-azonia-7-borata-5H-6,7,8,9-tetrahydrobenzocyclo- heptenes 6 are described. Crystals of 1-hydroxy-2- (4-methoxyphenyl)- 1,2-dihydro-4H-3,1-benzoxazine, 8b, are monoclinic, a = 9.379(2), b = 10.699(2), c = 12.9392(7) Å, β = 99.916(2)°, Z = 4 (two independent molecules), space group Pa; those of C-[4-(dimethylamino)phenyl]-N-[(2-hydroxymethyl)phenyl]nitrone, 5c, are monoclinic, a = 7.687(1), b = 7.891(1), c = 11.5053(9) Å, β = 92.781(9)°, Z = 2, space group P21; and those of 5-[4-(dimethylamino)phenylmethylene]-7,7-diphenyl-6,8-dioxa-5-azonia-7-borata-5H-6,7,8,9- tetrahydro-benzocycloheptene, 6a, are monoclinic, a = 10.771(1), b = 13.1057(9), c = 16.8724(7) Å, β = 90.005(5)°, Z = 4, space group P21/n. The structures were solved by direct methods and refined by full-matrix least-squares procedures to R(F2) = 0.120 (Rw(F2) = 0.135) for all 3149 reflections (R(F) = 0.071, Rw(F) = 0.063 for 1500 reflections with I >3 σ (I)) for 8b and R(F) = 0.035 and 0.036 (Rw(F) = 0.031 and 0.038) for 1071 and 3594 reflections with I >3 σ (I), respectively, for 5c and 6a. Compound 8b is the first structurally characterized 1-hydroxy-1,2-dihydro-4H-3,1-benzoxazine derivative and 6a features a relatively rare seven-membered boron-containing heterocycle.Key words: C-aryl-N-[2-(hydroxymethyl)phenyl]nitrones, 1-hydroxy-2-aryl-1,2-dihydro-4H-3,1-benzoxazines, organoboron compounds, crystal structures


1975 ◽  
Vol 28 (1) ◽  
pp. 15 ◽  
Author(s):  
JC Dewan ◽  
K Henrick ◽  
AH White ◽  
SB Wild

The crystal structures of the title compounds have been established by X-ray diffraction at 295 K, being refined by full-matrix least-squares to residuals of 0.054 (0.051) respectively 2715 (469) reflections with I > σ(I)]. Crystals are monoclinic, space group C2/c, the compounds being isomorphous. Oxychloride: a = 14.534(4), b = 8.337(2), c = 7.653(1)Ǻ, β = 106.48(1)�. Oxybromide: a = 14.884(4), b = 8.360(2), c = 7.726(1)Ǻ, β = 105.30(1)�, Z = 4. With the exception-of the arsenic- halogen distance, the geometries of the two molecules are identical within the limits of error: for the oxychloride As-O-As, 121.8(3); Cl- As-O,98.03(6); Cl-As-C, 97.2(2); O-As-C, 92. 9(2)� ; As-O, 1.787(3); As-C, 1.941(5) Ǻ. As-Cl is 2.222(2) and As-Br 2.381(2) Ǻ.


2019 ◽  
Vol 75 (11) ◽  
pp. 1524-1534
Author(s):  
Hamza Kherfi ◽  
Mohamed Al Amine Benhacine ◽  
Malika Hamadène ◽  
Fadila Balegroune

Single crystals of two new bimetallic oxalate compounds with the formula [ACr(C2O4)2(H2O)4] n (A = Li or Na), namely catena-poly[[diaqualithium(I)]-μ-oxalato-κ4 O 1,O 2:O 1′,O 2′-[diaquachromium(III)]-μ-oxalato-κ4 O 1,O 2:O 1′,O 2′], (I), and catena-poly[[diaquasodium(I)]-μ-oxalato-κ4 O 1,O 2:O 1′,O 2′-[di-aquachromium(III)]-μ-oxalato-κ4 O 1,O 2:O 1′,O 2′], (II), have been synthesized, characterized and their crystal structures elucidated by X-ray diffraction analysis and compared. The compounds crystallize in the monoclinic space group C2/m for (I) and in the triclinic space group P\overline{1} for (II); however, they have somewhat similar features. In the asymmetric unit of (I), the Li and Cr atoms both have space-group-imposed 2/m site symmetry, while only half of the oxalate ligand is present and two independent water molecules lie on the mirror plane. The water O atoms around the Li atom are disordered over two equivalent positions separated by 0.54 (4) Å. In the asymmetric unit of (II), the atoms of one C2O4 2− ligand and two independent water molecules are in general positions, and the Na and Cr atoms lie on an inversion centre. Taking into account the symmetry sites of both metallic elements, the unit cells may be described as pseudo-face-centred monoclinic for (I) and as pseudo-centred triclinic for (II). Both crystal structures are comprised of one-dimensional chains of alternating trans-Cr(CO)4(H2O)2 and trans-A(CO)4(H2O)2 units μ2-bridged by bis-chelating oxalate ligands. The resulting linear chains are parallel to the [101] direction for (I) and to the [11\overline{1}] direction for (II). Within the two coordination polymers, strong hydrogen bonds result in tetrameric R 4 4(12) synthons which link the metal chains, thus leading to two-dimensaional supramolecular architectures. The two structures differ from each other with respect to the symmetry relations inside the ligand, the role of electrostatic forces in the crystal structure and the molecular interactions of the hydrogen-bonded networks. Moreover, they exhibit the same UV–Vis pattern typical of a CrIII centrosymmetric geometry, while the IR absorption shows some differences due to the oxalate-ligand conformation. Polymers (I) and (II) are also distinguished by a different behaviours during the decomposition process, the precursor (I) leading to the oxide LiCrO2, while the residues of (II) consist of a mixture of sodium carbonate and CrIII oxide.


1977 ◽  
Vol 55 (9) ◽  
pp. 1454-1462 ◽  
Author(s):  
Steven J. Rettig ◽  
James Trotter

Crystals of the 3′-S isomer of the title compound are orthorhombic, a = 23.004(5), b = 11.103(1), c = 7.616(3) Å, Z = 4, space group P212121. Crystals of the 3′-R isomer are orthorhombic, a = 24.898(1), b = 10.4122(4), c = 7.6467(6) Å, Z = 4, space group P212121. The structures were solved by direct methods and were refined by full-matrix least squares procedures to final R values of 0.038 for 1466 and 1996 reflections with I ≥ 3σ(I) for the 3′-S and 3′-R isomers respectively. Both crystal structures consist of discrete molecules linked by systems of intermolecular N—H … O hydrogen bonds and possible weak C—H … O interactions.


Author(s):  
M. Bidya Sagar ◽  
K. Ravikumar ◽  
Y. S. Sadanandam

AbstractThe crystal structures of two dihydropyridines were solved by direct methods and refined by full-matrix least-squares procedure. 2,6-Dimethyl-3,5-di[N-methyl]-carbamoyl-4-[3,4-methoxy]phenyl-1,4-dihydropyridine hemihydrate, CBoth compounds crystallize with two molecules in the asymmetric unit. In compound


1984 ◽  
Vol 37 (1) ◽  
pp. 35 ◽  
Author(s):  
E Horn ◽  
MR Snow

Bromide abstraction from the complexes Re(CO)3L2Br (where L = SbPh3 and L2 = bpy, dpe, tmen)* by AgF2H gives the corresponding fluoro compounds Re(CO)3L2F. Mass spectra and structural data show that the fluoride in these complexes is coordinated to the metal. The structures of Re(CO)3(tmen)F and [Re(CO)3(tmen)F]2H.HOBF3 are reported here. Crystals of Re(CO)3(tmen)F are monoclinic, space group P21/c, with a 8.202(2), b 13.115(9), c 12.048(4) � and β 102 24(3)�. A full-matrix least-squares refinement by using the absorption corrected data gave a conventional R value of 0.041. [Re(CO)3(tmen)F]2H.HOBF3 also crystallizes in the space group P21/c. The lattice parameters are: a 17.495(2), b 10.772(2), c 15.447(1) � and β ( 101.409(8)�. The final R value of a blocked least-squares calculation converged at 0.061. In these two complexes the simple Re-F distance is 2.040(4) �, in Re(CO)3(tmen)F. The Re-F distance is increased to 2.236(10)�, as a result of hydrogen bonding between the fluoride and HOBF3 in the latter compound.


1987 ◽  
Vol 40 (5) ◽  
pp. 907 ◽  
Author(s):  
GB Deacon ◽  
BM Gatehouse ◽  
SN Platts ◽  
DL Wilkinson

The crystal structures of tris (η5-cyclopentadienyl) (pyridine) samarium(III), monoclinic, space group P21/c, a 10.906(4), b 8.636(2), c 17.825(3) �, β 96.44(2)�, Z 4, R 0.027 and Rw 0.032 for 3619 'observed' reflections, and tris (η5-cyclopentadienyl)(pyridine)neodymium(III), monoclinic, space group P21 / c, a 14-206(4), b 8.619(2), c 15.190(7) �, β 107.38(2)�, Z 4, R 0.035 and R, 0.039 for 2677 'observed' reflections have been determined. Both compounds have pseudotetrahedral geometry with a coordination number of 10 for the lanthanoid metal but there is a difference in the coordination of pyridine and in unit cell packing between the two structures.


1989 ◽  
Vol 67 (5) ◽  
pp. 933-940 ◽  
Author(s):  
Eckardt Ebeling ◽  
Wolfgang Kliegel ◽  
Steven J. Rettig ◽  
James Trotter

Details of the syntheses, physical properties, and crystal structures of the title compounds are reported. Crystals of 4,4-dimethyl-2,2-diphenyl-1,3-dioxa-4-azonia-2-boratacyclohexane, 3, are monoclinic, a = 6.512(1), b = 15.765(2), c = 14.342(4) Å, β = 93.170(7)°, Z = 4, space group Pn, and those of 3,3-dimethyl-2-phenoxy-2-phenyl-1-oxa-3-azonia-2-boratacyclopentane, 4, are orthorhombic, a = 13.5829(8), b = 16.940(1), c = 6.3181(4) Å, Z = 4, space group P21212. Both structures were solved by direct methods and were refined by full-matrix least-squares procedures to R = 0.034 and 0.034 for 1974 and 1478 reflections with I ≥ 3σ(I), respectively. The molecular structures are discussed in terms of the thermally-induced 1,2-migration of B-substituents by which 3 is converted to 4. Keywords: crystal structures, boron compounds, organoboron compounds.


2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
Harbi Tomah Al-Masri

The reaction of N,N-bis(diphenylphosphanyl)naphthylamine C10H7-1-N(PPh2)2 with (C5H10NH)2Cr(CO)4 (1 : 1 molar ratio) in dichloromethane afforded cis-[Cr(CO)4{C10H7-1-N(PPh2)2}] (1). This complex was crystallized in the monoclinic space group P21/n. The structure was solved by direct methods and refined by full-matrix least squares techniques to an R factor of 0.0313 for 6488 observed reflections. The Cr-metal is coordinated by four terminal CO molecules and a P,P′-bidentate N,N-bis(diphenylphosphanyl)naphthylamine ligand in a distorted octahedral array. The N-atom adopts a planar geometry with the two P-atoms and C-atom attached to it. The four-membered metallacycle ring P2CrN is nearly planar.


1992 ◽  
Vol 70 (11) ◽  
pp. 2771-2776 ◽  
Author(s):  
Santokh S. Tandon ◽  
Laurence K. Thompson ◽  
John N. Bridson ◽  
John C. Dewan

The ligand BTIM (1,2,4,5-tetrakis(4,5-dihydro-imidazol-2-yl)benzene) reacts with cobalt(II) salts to form two series of complexes. The 1:1, dinuclear, metallocyclic derivatives [Co2(BTIM)2X2]X2 (X = Cl (I), Br (II)) involve two bis-dentate ligands in a metallocyclic structure with a large unoccupied cavity. The 2:1, binuclear derivatives [Co2(BTIM)X4] (X = Cl (III), Br (IV)) involve two metals bound to a single, bis-bidentate ligand. The crystal and molecular structures of II and III are reported. Compound II crystallized in the monoclinic system, space group P21/c, with a = 13.642(6) Å, b = 11.560(3) Å, c = 18.406(7) Å, β = 101.73(3)° and four formula units per unit cell. Refinement by full-matrix least squares gave final residuals of R = 0.060 and Rw = 0.062. Compound III crystallized in the triclinic system, space group [Formula: see text], with a = 8.367(2) Å, b = 14.254(3) Å, c = 7.649(2) Å, α = 100.99(2)°, β = 101.44(2)°, γ = 106.85(1)° and one formula per unit cell. Refinement by full-matrix least squares gave final residuals of R = 0.052 and Rw = 0.045. In the metallocyclic structure (II) the square-pyramidal cobalt(II) centres are separated by 7.599(4) Å, while in the 2:1 derivative the two tetrahedral cobalt(II) centres have a much larger separation (8.736(3) Å).


Sign in / Sign up

Export Citation Format

Share Document