Acid tolerance in legume root nodule bacteria and selecting for it

2001 ◽  
Vol 41 (3) ◽  
pp. 435 ◽  
Author(s):  
M. J. Dilworth ◽  
J. G. Howieson ◽  
W. G. Reeve ◽  
R. P. Tiwari ◽  
A. R. Glenn

Bacteria face a variety of problems in trying to survive and grow in acidic environments. These include maintaining intracellular pH (pHi) in order to protect internal cell components, modifying or abandoning those external structures inevitably exposed to acidity, and resisting stresses whose interaction with pH may be the actual determinant of survival or growth rather than H+ toxicity per se. An important aspect of acid resistance in Gram-negative bacteria (including the root nodule bacteria) is the adaptive acid tolerance response (ATR), whereby cells grown at moderately acid pH are much more resistant to being killed under strongly acidic conditions than are cells grown at neutral pH. Survival during pH shock is also markedly affected by the calcium concentration in the medium. The pH at which commercial legume inoculants are grown and supplied for inoculation into acid soils may therefore be of considerable importance for initial inoculant survival. The mechanisms of resistance to acidity in root nodule bacteria have been investigated via 3 approaches: (i) creation of acid-sensitive mutants from acid-tolerant strains, and identification of the genes involved; (ii) random insertion of reporter genes to create mutants with pH-dependent reporter expression; and (iii) proteomics and identification of proteins regulated in response to acidity. The results of the first approach, directed at genes essential for growth at acid pH, have identified a sensor–regulator gene pair (actS–actR), a copper-transporting ATPase (actP), and another gene involved in lipid metabolism (actA), inactivation of which results in sensitivity to heavy metals. While the ActS–ActR system is undoubtedly required for both acid tolerance and the ATR, it is also involved in global regulation of a wide range of cellular processes. The second approach has allowed identification of a range of acid-responsive genes, which are not themselves critical to growth at low pH. One of these (phrR) is itself a regulator gene induced by a range of stresses including acid pH, but not controlled by the ActS–ActR system. Another, lpiA, responds specifically to acidity (not to other stresses) and may well be an antiporter related to nhaB, which is involved in Na+ transport in other bacteria. The third approach indicates a number of proteins whose concentration changes with a switch from neutral to acidic growth pH; most of these seem to have no homologues in the protein databases, while the blocked N-terminal sequences of others have prevented identification. It has been common experience that strains of root nodule bacteria selected for acid tolerance in the laboratory are not necessarily successful as inoculants in acid soils. In the light of the complex interactive effects on growth and survival of H+, Ca2+ and Cu2+ concentrations in our studies, this lack of correlation is no longer surprising. It remains to be seen whether it will be possible to improve the correlation between growth on laboratory media and performance in acid soils by determining which strains show an ATR, and by screening on media with defined ranges of concentration of some of these critical metal ions, perhaps approximating those to be expected in the soils in question.

1995 ◽  
Vol 46 (5) ◽  
pp. 997 ◽  
Author(s):  
JG Howieson ◽  
A Loi ◽  
SJ Carr

Biserrula pelecinus is a monotypic genus which displays agronomic potential for acid, duplex soils. Whilst it is widespread in the Mediterranean basin, it represents a new pasture legume to Australia. The root-nodule bacteria isolated from B. pelecinus nodules collected from Morocco and Sardinia were unique in the sense that they appeared to be specific to this legume. They also grew at a lower pH on an acidified growth medium than the rhizobia for clover, peas and medic, which indicated a potential adaptation to acid soils. B. pelecinus was not nodulated by any of the commercially available species of root-nodule bacteria in use in Australia that we evaluated. Hence, it appears that the development of B. pelecinus for industry will be contingent upon the commercialization of its specific rhizobia. Several genotypes of B. pelecinus produced vigorous growth and high seed yields at two field sites in the wheatbelt of Western Australia, which received less than 250 mm rainfall in 1994.


Microbiology ◽  
2021 ◽  
Vol 90 (4) ◽  
pp. 481-488
Author(s):  
A. A. Vladimirova ◽  
R. S. Gumenko ◽  
E. S. Akimova ◽  
Al. Kh. Baymiev ◽  
An. Kh. Baymiev

1999 ◽  
Vol 30 (3) ◽  
pp. 203-208 ◽  
Author(s):  
Luiz Antonio de Oliveira ◽  
Hélio Paracaima de Magalhães

Quantification of acidity tolerance in the laboratory may be the first step in rhizobial strain selection for the Amazon region. The present method evaluated rhizobia in Petri dishes with YMA medium at pH 6.5 (control) and 4.5, using scores of 1.0 (sensitive, "no visible" growth) to 4.0 (tolerant, maximum growth). Growth evaluations were done at 6, 9, 12, 15 and 18 day periods. This method permits preliminary selection of root nodule bacteria from Amazonian soils with statistical precision. Among the 31 rhizobia strains initially tested, the INPA strains 048, 078, and 671 presented scores of 4.0 at both pHs after 9 days of growth. Strain analyses using a less rigorous criterion (growth scores higher than 3.0) included in this highly tolerant group the INPA strains 511, 565, 576, 632, 649, and 658, which grew on the most diluted zone (zone 4) after 9 days. Tolerant strains still must be tested for nitrogen fixation effectiveness, competitiveness for nodule sites, and soil persistence before their recommendation as inoculants.


Sign in / Sign up

Export Citation Format

Share Document