scholarly journals Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy

2015 ◽  
Vol 112 (24) ◽  
pp. E3095-E3103 ◽  
Author(s):  
András Micsonai ◽  
Frank Wien ◽  
Linda Kernya ◽  
Young-Ho Lee ◽  
Yuji Goto ◽  
...  

Circular dichroism (CD) spectroscopy is a widely used technique for the study of protein structure. Numerous algorithms have been developed for the estimation of the secondary structure composition from the CD spectra. These methods often fail to provide acceptable results on α/β-mixed or β-structure–rich proteins. The problem arises from the spectral diversity of β-structures, which has hitherto been considered as an intrinsic limitation of the technique. The predictions are less reliable for proteins of unusual β-structures such as membrane proteins, protein aggregates, and amyloid fibrils. Here, we show that the parallel/antiparallel orientation and the twisting of the β-sheets account for the observed spectral diversity. We have developed a method called β-structure selection (BeStSel) for the secondary structure estimation that takes into account the twist of β-structures. This method can reliably distinguish parallel and antiparallel β-sheets and accurately estimates the secondary structure for a broad range of proteins. Moreover, the secondary structure components applied by the method are characteristic to the protein fold, and thus the fold can be predicted to the level of topology in the CATH classification from a single CD spectrum. By constructing a web server, we offer a general tool for a quick and reliable structure analysis using conventional CD or synchrotron radiation CD (SRCD) spectroscopy for the protein science research community. The method is especially useful when X-ray or NMR techniques fail. Using BeStSel on data collected by SRCD spectroscopy, we investigated the structure of amyloid fibrils of various disease-related proteins and peptides.

Author(s):  
András Micsonai ◽  
Éva Bulyáki ◽  
József Kardos

Abstract Far-UV circular dichroism (CD) spectroscopy is a classical method for the study of the secondary structure of polypeptides in solution. It has been the general view that the α-helix content can be estimated accurately from the CD spectra. However, the technique was less reliable to estimate the β-sheet contents as a consequence of the structural variety of the β-sheets, which is reflected in a large spectral diversity of the CD spectra of proteins containing this secondary structure component. By taking into account the parallel or antiparallel orientation and the twist of the β-sheets, the Beta Structure Selection (BeStSel) method provides an improved β-structure determination and its performance is more accurate for any of the secondary structure types compared to previous CD spectrum analysis algorithms. Moreover, BeStSel provides extra information on the orientation and twist of the β-sheets which is sufficient for the prediction of the protein fold. The advantage of CD spectroscopy is that it is a fast and inexpensive technique with easy data processing which can be used in a wide protein concentration range and under various buffer conditions. It is especially useful when the atomic resolution structure is not available, such as the case of protein aggregates, membrane proteins or natively disordered chains, for studying conformational transitions, testing the effect of the environmental conditions on the protein structure, for verifying the correct fold of recombinant proteins in every scientific fields working on proteins from basic protein science to biotechnology and pharmaceutical industry. Here, we provide a brief step-by-step guide to record the CD spectra of proteins and their analysis with the BeStSel method.


Sign in / Sign up

Export Citation Format

Share Document