circular dichroism
Recently Published Documents


TOTAL DOCUMENTS

12242
(FIVE YEARS 855)

H-INDEX

152
(FIVE YEARS 12)

Author(s):  
Voxob Rustamovich Rasulov ◽  
Rustam Yavkachovich Rasulov ◽  
Mavzurjon Xursandboyevich Qo’chqorov ◽  
Nurillo Ubaydullo o’g’li Kodirov

The polarization and frequency-polarization dependences of the linear-circular dichroism and light absorption coefficients in semiconductors of cubic symmetry, caused by vertical three-photon optical transitions between the states of the spin-orbit splitting and conduction bands, are calculated. KEY WORDS: three-photon optical transitions, spin-orbit splitting band, conduction band, linear-circular dichroism, light absorption, semiconductor.


Chemistry ◽  
2022 ◽  
Vol 4 (1) ◽  
pp. 31-41
Author(s):  
Piero Decleva

The sensitivity of Photoelectron Circular Dichroism (PECD) in the angular distribution of photoelectrons, a recent chiral technique, to detect chirality in pure hydrocarbons is investigated in a number of benchmark molecules. It is found that a very large chiral signal is expected, surpassing most current examples, giving a sure fingerprint of absolute configuration. On the other hand, the sensitivity to specific isomers or closely related molecules is relatively modest.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Marius Morgenroth ◽  
Mirko Scholz ◽  
Min Ju Cho ◽  
Dong Hoon Choi ◽  
Kawon Oum ◽  
...  

AbstractMeasurements of the electronic circular dichroism (CD) are highly sensitive to the absolute configuration and conformation of chiral molecules and supramolecular assemblies and have therefore found widespread application in the chemical and biological sciences. Here, we demonstrate an approach to simultaneously follow changes in the CD and absorption response of photoexcited systems over the ultraviolet−visible spectral range with 100 fs time resolution. We apply the concept to chiral polyfluorene copolymer thin films and track their electronic relaxation in detail. The transient CD signal stems from the supramolecular response of the system and provides information regarding the recovery of the electronic ground state. This allows for a quantification of singlet−singlet annihilation and charge-pair formation processes. Spatial mapping of chiral domains on femtosecond time scales with a resolution of 50 μm and diffraction-limited steady-state imaging of the circular dichroism and the circularly polarised luminescence (CPL) of the films is demonstrated.


Author(s):  
Simon Patching

The aim of this work was to test polyamines as potential natural substrates of the Acinetobacter baumannii chlorhexidine efflux protein AceI using near-UV synchrotron radiation circular dichroism (SRCD) spectroscopy. The Gram-negative bacterium A. Baumannii is a leading cause of hospital-acquired infections and an important foodborne pathogen. A. Baumannii strains are becoming increasingly resistant to antimicrobial agents, including the synthetic antiseptic chlorhexidine. AceI was the founding member of the recently recognised PACE family of bacterial multidrug efflux proteins. Using the plasmid construct pTTQ18-aceI(His6) containing the A. Baumannii aceI gene directly upstream from a His6-tag coding sequence, expression of AceI(His6) was amplified in E. coli BL21(DE3) cells. Near-UV (250-340 nm) SRCD measurements were performed on detergent-solubilised and purified AceI(His6) at 20 °C. Sample and SRCD experimental conditions were identified that detected binding of the triamine spermidine to AceI(His6). In a titration with spermidine (0-10 mM) this binding was saturable and fitting of the curve for the change in signal intensity produced an apparent binding affinity (KD) of 3.97 +/- 0.45 mM. These SRCD results were the first experimental evidence obtained for polyamines as natural substrates of PACE proteins.


2022 ◽  
pp. 000370282110600
Author(s):  
Pilar Gema Rodríguez-Ortega ◽  
Magdalena Sánchez-Valera ◽  
Juan Jesús López-González ◽  
Manuel Montejo

The molecular structure and solution-state molecular interactions in the popular non-steroidal anti-inflammatory drug, ketoprofen, are extensively studied with the aim of gaining a better understanding of the chemical behavior of its solution state and its connection to its nucleation pathway and crystallization outcome. Using as reference solid-state X-ray structures of enantiomeric and racemic forms of ketoprofen, a set of self-assembly models underpinned by density functional theory calculations has been considered for the analysis of spectroscopic data, infrared (IR) and vibrational circular dichroism (VCD), obtained for solutions of the samples as a function of composition and solvent. From our results it can be concluded that, contrary to the general belief for generic carboxylic acids, there are no cyclic dimeric structures of ketoprofen present in solution, but rather linear arrays made up of two (in high polar or diluted media) or more units (in low polar or low dilution media). This observation is in line with the idea that the weak contacts (other than H-bonding) would hold the key to molecular self-assembly, in agreement with recent studies on other aromatic carboxylic acids.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Javier Rodríguez-Álvarez ◽  
Antonio García-Martín ◽  
Arantxa Fraile Rodríguez ◽  
Xavier Batlle ◽  
Amílcar Labarta

AbstractWe present a system consisting of two stacked chiral plasmonic nanoelements, so-called triskelia, that exhibits a high degree of circular dichroism. The optical modes arising from the interactions between the two elements are the main responsible for the dichroic signal. Their excitation in the absorption cross section is favored when the circular polarization of the light is opposite to the helicity of the system, so that an intense near-field distribution with 3D character is excited between the two triskelia, which in turn causes the dichroic response. Therefore, the stacking, in itself, provides a simple way to tune both the value of the circular dichroism, up to 60%, and its spectral distribution in the visible and near infrared range. We show how these interaction-driven modes can be controlled by finely tuning the distance and the relative twist angle between the triskelia, yielding maximum values of the dichroism at 20° and 100° for left- and right-handed circularly polarized light, respectively. Despite the three-fold symmetry of the elements, these two situations are not completely equivalent since the interplay between the handedness of the stack and the chirality of each single element breaks the symmetry between clockwise and anticlockwise rotation angles around 0°. This reveals the occurrence of clear helicity-dependent resonances. The proposed structure can be thus finely tuned to tailor the dichroic signal for applications at will, such as highly efficient helicity-sensitive surface spectroscopies or single-photon polarization detectors, among others.


2022 ◽  
pp. 000370282110571
Author(s):  
Curtis W. Meuse

Interlaboratory comparisons of circular dichroism (CD) spectra are useful for developing confidence in the measurements associated with optically active molecules. These measurements also help define the higher-order (secondary and tertiary) structure of biopolymers. Unfortunately, the extent of the validity of these measurements has been unclear. In this work, a method is described to extend CD validation over the entire observed wavelength range using what will be called spectral similarity plots. The method involves plotting, wavelength by wavelength, all measured spectral intensities of a sample at one concentration against the intensity values of the same material at a different concentration or pathlength. These spectral similarity plots validate the instrument in terms of spectral shape and whether the shape is shifted in intensity and/or in wavelength. This comparison tests the linearity of instrument’s signal, the balance of its left and right polarizations, its wavelengths, and its spectral intensity scales. When the process is applied to materials with accepted and archived intensity values, the method can be linked to older single-wavelength and double-wavelength calibration techniques. Further, spectral similarity testing of CD spectra from samples with different concentrations run in different labs suggests that improved interlaboratory validation of CD data is possible. Since a database of archival CD measurements is available online, spectral similarity comparisons could possibly provide the ability to compare linearity, polarization balance, wavelength, and spectral intensity between all current CD instruments. If the preliminary results published here prove robust and transferable, then comparisons of full-wavelength range spectra to archived data using spectral similarity plots should become part of the standard process to validate and calibrate the performance of CD instruments.


Chirality ◽  
2022 ◽  
Author(s):  
Yu Xue ◽  
Natalie Fehn ◽  
Viktoria Katharina Brandt ◽  
Michele Stasi ◽  
Job Boekhoven ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document