scholarly journals Quantum critical phenomena in a compressible displacive ferroelectric

2020 ◽  
Vol 117 (23) ◽  
pp. 12707-12712 ◽  
Author(s):  
Matthew J. Coak ◽  
Charles R. S. Haines ◽  
Cheng Liu ◽  
Stephen E. Rowley ◽  
Gilbert G. Lonzarich ◽  
...  

The dielectric and magnetic polarizations of quantum paraelectrics and paramagnetic materials have in many cases been found to initially increase with increasing thermal disorder and hence, exhibit peaks as a function of temperature. A quantitative description of these examples of “order-by-disorder” phenomena has remained elusive in nearly ferromagnetic metals and in dielectrics on the border of displacive ferroelectric transitions. Here, we present an experimental study of the evolution of the dielectric susceptibility peak as a function of pressure in the nearly ferroelectric material, strontium titanate, which reveals that the peak position collapses toward absolute zero as the ferroelectric quantum critical point is approached. We show that this behavior can be described in detail without the use of adjustable parameters in terms of the Larkin–Khmelnitskii–Shneerson–Rechester (LKSR) theory, first introduced nearly 50 y ago, of the hybridization of polar and acoustic modes in quantum paraelectrics, in contrast to alternative models that have been proposed. Our study allows us to construct a detailed temperature–pressure phase diagram of a material on the border of a ferroelectric quantum critical point comprising ferroelectric, quantum critical paraelectric, and hybridized polar-acoustic regimes. Furthermore, at the lowest temperatures, below the susceptibility maximum, we observe a regime characterized by a linear temperature dependence of the inverse susceptibility that differs sharply from the quartic temperature dependence predicted by the LKSR theory. We find that this non-LKSR low-temperature regime cannot be accounted for in terms of any detailed model reported in the literature, and its interpretation poses an empirical and conceptual challenge.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Kousik Samanta ◽  
Jean C. Souza ◽  
Danilo Rigitano ◽  
Adimir I. Morales ◽  
Pascoal G. Pagliuso ◽  
...  

AbstractIridates provide a fertile ground to investigate correlated electrons in the presence of strong spin-orbit coupling. Bringing these systems to the proximity of a metal-insulator quantum phase transition is a challenge that must be met to access quantum critical fluctuations with charge and spin-orbital degrees of freedom. Here, electrical transport and Raman scattering measurements provide evidence that a metal-insulator quantum critical point is effectively reached in 5% Co-doped Sr2IrO4 with high structural quality. The dc-electrical conductivity shows a linear temperature dependence that is successfully captured by a model involving a Co acceptor level at the Fermi energy that becomes gradually populated at finite temperatures, creating thermally-activated holes in the Jeff = 1/2 lower Hubbard band. The so-formed quantum critical fluctuations are exceptionally heavy and the resulting electronic continuum couples with an optical phonon at all temperatures. The magnetic order and pseudospin-phonon coupling are preserved under the Co doping. This work brings quantum phase transitions, iridates and heavy-fermion physics to the same arena.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
S. Hayashida ◽  
L. Huberich ◽  
D. Flavián ◽  
Z. Yan ◽  
K. Yu. Povarov ◽  
...  

2008 ◽  
Vol 5 (1) ◽  
pp. 31-34 ◽  
Author(s):  
R. Daou ◽  
Nicolas Doiron-Leyraud ◽  
David LeBoeuf ◽  
S. Y. Li ◽  
Francis Laliberté ◽  
...  

2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Sangyun Lee ◽  
Tae Beom Park ◽  
Jihyun Kim ◽  
Soon-Gil Jung ◽  
Won Kyung Seong ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
S. Chibani ◽  
D. Farina ◽  
P. Massat ◽  
M. Cazayous ◽  
A. Sacuto ◽  
...  

AbstractWe report the evolution of nematic fluctuations in FeSe1−xSx single crystals as a function of Sulfur content x across the nematic quantum critical point (QCP) xc ~ 0.17 via Raman scattering. The Raman spectra in the B1g nematic channel consist of two components, but only the low energy one displays clear fingerprints of critical behavior and is attributed to itinerant carriers. Curie–Weiss analysis of the associated nematic susceptibility indicates a substantial effect of nemato-elastic coupling, which shifts the location of the nematic QCP. We argue that this lattice-induced shift likely explains the absence of any enhancement of the superconducting transition temperature at the QCP. The presence of two components in the nematic fluctuations spectrum is attributed to the dual aspect of electronic degrees of freedom in Hund’s metals, with both itinerant carriers and local moments contributing to the nematic susceptibility.


2021 ◽  
Vol 103 (5) ◽  
Author(s):  
Li Xiang ◽  
Elena Gati ◽  
Sergey L. Bud'ko ◽  
Scott M. Saunders ◽  
Paul C. Canfield

2016 ◽  
Vol 25 (7) ◽  
pp. 077403
Author(s):  
Shan Cui ◽  
Lan-Po He ◽  
Xiao-Chen Hong ◽  
Xiang-De Zhu ◽  
Cedomir Petrovic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document