metal insulator
Recently Published Documents


TOTAL DOCUMENTS

8204
(FIVE YEARS 929)

H-INDEX

143
(FIVE YEARS 16)

Author(s):  
Weixian Zhao ◽  
Zhan Zhu ◽  
Yiwen Fan ◽  
Wang Xi ◽  
Run Hu ◽  
...  
Keyword(s):  

2022 ◽  
Vol 6 (4) ◽  
Author(s):  
Tony Liss ◽  
Parameswaran Nair

Myriam Sarachik passed away on October 7, 2021. Her work on the Kondo effect, the metal-insulator transition, and quantum tunneling in molecular magnets are highlights in her research career. But her lifetime of first-rate work was realized in the face of great adversity. She was a totem of not only scientific excellence, but also of the perseverance of the human spirit.


2022 ◽  
Author(s):  
Hyojung Kim ◽  
Jongwoo Park ◽  
Taeyoung Khim ◽  
Hyuncheol Hwang ◽  
Jungmin Park ◽  
...  

Abstract Flexible devices fabricated with polyimide (PI) substrate are crucial for foldable, rollable, or stretchable products in various applications. However, inherent technical challenges remain in mobile charge induced device instabilities and image retention, significantly hindering future technologies. We introduced a new barrier material, SiCOH, into the backplane of amorphous indium-gallium-zinc-oxide (a–IGZO) thin-film transistors (TFTs) that were then implemented into production-level flexible panels. We found that the SiCOH layer effectively compensates the surface charging induced by fluorine ions at the interface between the PI substrate and the barrier layer under bias stress, thereby preventing abnormal positive Vth shifts and image disturbance. The a–IGZO TFTs, metal-insulator-metal (MIM), and metal-insulator-semiconductor (MIS) capacitors with the SiCOH layer demonstrate reliable device performance, Vth shifts, and capacitance changes with an increase in the gate bias stress. A flexible device with SiCOH enables the suppression of abnormal Vth shifts associated with PI and plays a vital role in the degree of image sticking phenomenon. This work provides new inspirations to creating much improved process integrity and paves the way for expediting versatile form-factors.


Author(s):  
Kota Kataoka ◽  
Daigorou Hirai ◽  
Akihiro Koda ◽  
Ryosuke Kadono ◽  
Takashi Honda ◽  
...  

Abstract Semimetallic osmium pyrochlore oxide Cd2Os2O7 undergoes a magnetic transition to an all-in-all-out (AIAO)-type order at 227 K, followed by a crossover to an AIAO insulator at around 210 K. Here, we studied the isostructural and isoelectronic compound Hg2Os2O7 through thermodynamic measurements, µSR spectroscopy and neutron diffraction experiments. A similar magnetic transition, probably to an AIAO-type order, was observed at 88 K, while the resistivity showed a decrease at the transition and remained metallic down to 2 K. Thus, the ground state of Hg2Os2O7 is most likely an AIAO semimetal, which is analogous to the intermediate-temperature state of Cd2Os2O7. Hg2Os2O7 exists on the verge of the metal–insulator boundary on the metal side and provides an excellent platform for studying the electronic instability of 5d electrons with moderate electron correlations and strong spin–orbit interactions.


2022 ◽  
Author(s):  
Haowen Chen ◽  
Yunping Qi ◽  
Jinghui Ding ◽  
Yujiao Yuan ◽  
Zhenting Tian ◽  
...  

Abstract A plasmonic resonator system consisting of a metal-insulator-metal waveguide and a Q-shaped resonant cavity is proposed in this paper. The transmission properties of surface plasmon polaritons in this structure are investigated using the finite difference in time domain (FDTD) method, and the simulation results contain two resonant dips. And the physical mechanism is studied by the multimode interference coupled mode theory (MICMT), the theoretical results are in highly consistent with the simulation results. Furthermore, the parameters of the Q-shaped cavity can be controlled to adjust two dips respectively. The refractive index sensor with a sensitivity of 1578nm/RIU and figure of merit (FOM) of 175, performs better than most of the similar structures. Therefore, the results of the study are instructive for the design and application of high sensitivity nanoscale refractive index sensors.


Author(s):  
Minju Kim ◽  
Youngji Kim ◽  
Kiheung Kim ◽  
Wen-Tse Huang ◽  
Ru-Shi Liu ◽  
...  

29-Fold luminescence enhancement of upconversion nanoparticle-sensitized perovskite quantum dots was achieved by implementing a metal–insulator–metal configuration and plasmonic coupling.


Author(s):  
Yunjie Shi ◽  
Wei Liu ◽  
Shidi Liu ◽  
Tianyu Yang ◽  
Yuming Dong ◽  
...  

We report the strong coupling between plasmonic surface lattice resonances (SLRs) and photonic Fabry-Pérot (F-P) resonances in a microcavity embedded with two-dimensional periodic array of metal-insulator-metal nanopillars. For such a plasmonic-photonic system, we show that the SLR can be strongly coupled to the F-P resonances of both the odd- and even orders, and that the splitting energy reaches as high as 138 meV in the visible regime. We expect that this work will provide a new scheme for strong coupling between plasmonic and photonic modes.


Sign in / Sign up

Export Citation Format

Share Document