scholarly journals RNA from an immediate early region of the type 1 herpes simplex virus genome is present in the trigeminal ganglia of latently infected mice.

1987 ◽  
Vol 84 (10) ◽  
pp. 3204-3208 ◽  
Author(s):  
A. M. Deatly ◽  
J. G. Spivack ◽  
E. Lavi ◽  
N. W. Fraser
2008 ◽  
Vol 83 (5) ◽  
pp. 2246-2254 ◽  
Author(s):  
Kevin R. Mott ◽  
Catherine J. Bresee ◽  
Sariah J. Allen ◽  
Lbachir BenMohamed ◽  
Steven L. Wechsler ◽  
...  

ABSTRACT A hallmark of infection with herpes simplex virus type 1 (HSV-1) is the establishment of latency in ganglia of the infected individual. During the life of the latently infected individual, the virus can occasionally reactivate, travel back to the eye, and cause recurrent disease. Indeed, a major cause of corneal scarring (CS) is the scarring induced by HSV-1 following reactivation from latency. In this study, we evaluated the relationship between the amount of CS and the level of the HSV-1 latency-associated transcript (LAT) in trigeminal ganglia (TG) of latently infected mice. Our results suggested that the amount of CS was not related to the amount of virus replication following primary ocular HSV-1 infection, since replication in the eyes was similar in mice that did not develop CS, mice that developed CS in just one eye, and mice that developed CS in both eyes. In contrast, mice with no CS had significantly less LAT, and thus presumably less latency, in their TG than mice that had CS in both eyes. Higher CS also correlated with higher levels of mRNAs for PD-1, CD4, CD8, F4/80, interleukin-4, gamma interferon, granzyme A, and granzyme B in both cornea and TG. These results suggest that (i) the immunopathology induced by HSV-1 infection does not correlate with primary virus replication in the eye; (ii) increased CS appears to correlate with increased latency in the TG, although the possible cause-and-effect relationship is not known; and (iii) increased latency in mouse TG correlates with higher levels of PD-1 mRNA, suggesting exhaustion of CD8+ T cells.


2001 ◽  
Vol 75 (21) ◽  
pp. 10401-10408 ◽  
Author(s):  
Naomi S. Taus ◽  
William J. Mitchell

ABSTRACT Herpes simplex virus type 1 (HSV-1) establishes a latent infection in neurons of sensory ganglia, including those of the trigeminal ganglia. Latent viral infection has been hypothesized to be regulated by restriction of viral immediate-early gene expression in neurons. Numerous in situ hybridization studies in mice and in humans have shown that transcription from the HSV-1 genome in latently infected neurons is limited to the latency-associated transcripts. In other studies, immediate-early gene (ICP4) transcripts have been detected by reverse transcription-PCR (RT-PCR) in homogenates of latently infected trigeminal ganglia of mice. We used reporter transgenic mice containing the HSV-1(F) ICP4 promoter fused to the coding sequence of the β-galactosidase gene to determine whether neurons in latently infected trigeminal ganglia activated the ICP4 promoter. Mice were inoculated via the corneal route with HSV-1(F). At 5, 11, 23, and 37 days postinfection (dpi), trigeminal ganglia were examined for β-galactosidase-positive cells. The numbers of β-galactosidase-positive neurons and nonneuronal cells were similar at 5 dpi. The number of positive neurons decreased at 11 dpi and returned to the level of mock-inoculated transgenic controls at 23 and 37 dpi. The number of positive nonneuronal cells increased at 11 and 23 dpi and remained elevated at 37 dpi. Viral proteins were detected in neurons and nonneuronal cells in acutely infected ganglia, but were not detected in latently infected ganglia. Colabeling experiments confirmed that the transgenic ICP4 promoter was activated in Schwann cells during latent infection. These findings suggest that the cells that express the HSV-1 ICP4 gene in latently infected ganglia are not neurons.


Sign in / Sign up

Export Citation Format

Share Document