scholarly journals A mutational analysis of the insulin gene transcription control region: expression in beta cells is dependent on two related sequences within the enhancer.

1987 ◽  
Vol 84 (24) ◽  
pp. 8819-8823 ◽  
Author(s):  
O. Karlsson ◽  
T. Edlund ◽  
J. B. Moss ◽  
W. J. Rutter ◽  
M. D. Walker
2014 ◽  
Vol 61 (1) ◽  
pp. 85-90 ◽  
Author(s):  
Yong-Soo Lee ◽  
Masaki Kobayashi ◽  
Osamu Kikuchi ◽  
Tsutomu Sasaki ◽  
Hiromi Yokota-Hashimoto ◽  
...  

1994 ◽  
Vol 14 (1) ◽  
pp. 655-662
Author(s):  
E Henderson ◽  
R Stein

Selective transcription of the insulin gene in pancreatic beta cells is regulated by its enhancer, located between nucleotides -340 and -91 relative to the transcription start site. One of the principal control elements within the enhancer is found between nucleotides -100 and -91 (GCCATCTGCT, referred to as the insulin control element [ICE]) and is regulated by both positive- and negative-acting transcription factors in the helix-loop-helix (HLH) family. It was previously shown that the c-jun proto-oncogene can repress insulin gene transcription. We have found that c-jun inhibits ICE-stimulated transcription. Inhibition of ICE-directed transcription is mediated by sequences within the carboxy-terminal region of the protein. These c-jun sequences span an activation domain and the basic leucine zipper DNA binding-dimerization region of the protein. Both regions of c-jun are conserved within the other members of the jun family: junB and junD. These proteins also suppress ICE-mediated transcription. The jun proteins do not appear to inhibit insulin gene transcription by binding directly to the ICE. c-jun and junB also block the trans-activation potential of two skeletal muscle-specific HLH proteins, MyoD and myogenin. These results suggests that the jun proteins may be common transcription control factors used in skeletal muscle and pancreatic beta cells to regulate HLH-mediated activity. We discuss the possible significance of these observations to insulin gene transcription in pancreatic beta cells.


1994 ◽  
Vol 14 (1) ◽  
pp. 655-662 ◽  
Author(s):  
E Henderson ◽  
R Stein

Selective transcription of the insulin gene in pancreatic beta cells is regulated by its enhancer, located between nucleotides -340 and -91 relative to the transcription start site. One of the principal control elements within the enhancer is found between nucleotides -100 and -91 (GCCATCTGCT, referred to as the insulin control element [ICE]) and is regulated by both positive- and negative-acting transcription factors in the helix-loop-helix (HLH) family. It was previously shown that the c-jun proto-oncogene can repress insulin gene transcription. We have found that c-jun inhibits ICE-stimulated transcription. Inhibition of ICE-directed transcription is mediated by sequences within the carboxy-terminal region of the protein. These c-jun sequences span an activation domain and the basic leucine zipper DNA binding-dimerization region of the protein. Both regions of c-jun are conserved within the other members of the jun family: junB and junD. These proteins also suppress ICE-mediated transcription. The jun proteins do not appear to inhibit insulin gene transcription by binding directly to the ICE. c-jun and junB also block the trans-activation potential of two skeletal muscle-specific HLH proteins, MyoD and myogenin. These results suggests that the jun proteins may be common transcription control factors used in skeletal muscle and pancreatic beta cells to regulate HLH-mediated activity. We discuss the possible significance of these observations to insulin gene transcription in pancreatic beta cells.


2019 ◽  
Vol 55 (4) ◽  
pp. 226-236 ◽  
Author(s):  
Takashi Sekido ◽  
Shin-ichi Nishio ◽  
Yohsuke Ohkubo ◽  
Keiko Sekido ◽  
Junichiro Kitahara ◽  
...  

FEBS Letters ◽  
1994 ◽  
Vol 338 (2) ◽  
pp. 187-190 ◽  
Author(s):  
Roland Stein ◽  
Eva Henderson ◽  
Susan R. Cordle

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 2160-P
Author(s):  
ANAND HARDIKAR ◽  
WILSON WONG ◽  
MUGDHA JOGLEKAR ◽  
LOUISE T. DALGAARD ◽  
ALICIA JENKINS ◽  
...  

2005 ◽  
Vol 280 (12) ◽  
pp. 11887-11894 ◽  
Author(s):  
Li Zhao ◽  
Min Guo ◽  
Taka-aki Matsuoka ◽  
Derek K. Hagman ◽  
Susan D. Parazzoli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document