transcriptional activation
Recently Published Documents





2022 ◽  
Vol 12 ◽  
Lu Zhao ◽  
Zhongbang Song ◽  
Bingwu Wang ◽  
Yulong Gao ◽  
Junli Shi ◽  

Proanthocyanidins (PAs) are important phenolic compounds and PA biosynthesis is regulated by a ternary MBW complex consisting of a R2R3-MYB regulator, a bHLH factor and a WDR protein. In this study, a tobacco R2R3-MYB factor NtMYB330 was characterized as the PA-specific regulator in which the PA biosynthesis was promoted in the flowers of NtMYB330-overexpressing lines while decreased in the flowers of ntmyb330 mutants. NtMYB330 can interact with flavonoid-related bHLH partner NtAn1b and WDR protein NtAn11-1, and the NtMYB330-NtAn1b complex is required to achieve strong transcriptional activation of the PA-related structural genes NtDFR1, NtANS1, NtLAR1 and NtANR1. Our data reveal that NtMYB330 regulates PA biosynthesis in seeds and affects seed germination, in which NtMYB330-overexpressing lines showed higher PA accumulations in seed coats and inhibited germination, while ntmyb330 mutants had reduced seed coat PAs and improved germination. NtMYB330 affects seed germination possibly through two mechanisms: modulating seed coat PAs to affect coat-imposed dormancy. In addition, NtMYB330 regulates the expressions of abscisic acid (ABA) and gibberellin acid (GA) signaling-related genes, affecting ABA-GA crosstalk and seed germination. This study reveals that NtMYB330 specifically regulates PA biosynthesis via formation of the MBW complex in tobacco flowers and affects germination through adjustment of PA concentrations and ABA/GA signaling in tobacco seeds.

2022 ◽  
Vol 22 (1) ◽  
Nabamita Boruah ◽  
Chongtham Sovachandra Singh ◽  
Pooja Swargiary ◽  
Hughbert Dkhar ◽  
Anupam Chatterjee

Abstract Background Raw areca nut (RAN) consumption induces oral, esophageal and gastric cancers, which are significantly associated with the overexpression of pituitary tumor transforming gene 1/securin and chromosomal instability (CIN). An association of Securin/PTTG1 upregulation and gastric cancer in human was also demonstrated earlier. Since the molecular mechanism underlying securin upregulation remains unclear, this study intended to investigate the association of securin upregulation with the Rb-E2F1 circuit and epigenetic histone (H3) modification patterns both globally and in the promoter region of the securin gene. Methods Six groups of mice were used, and in the treated group, each mouse consumed 1 mg of RAN extract with lime per day ad libitum in the drinking water for 60 days, after which the dose was increased by 1 mg every 60 days. Histopathological evaluation of stomach tissues was performed and securin expression was analysed by immunoblotting as well as by immunohistochemistry. ChIP-qPCR assays were performed to evaluate the recruitment of different histone modifications in the core promoter region of securin gene as well as its upstream and downstream regions. Results All mice developed gastric cancer with securin overexpression after 300 days of feeding. Immunohistochemistry data revealed hyperphosphorylation of Rb and upregulation of E2F1 in the RAN-treated samples. Increased trimethylation of H3 lysine 4 and acetylation of H3 lysine 9 and 18 both globally and in the promoter region of the securin gene were observed by increasing the levels of lysine-N-methyltransferase 2A, lysine-acetyltransferase, EP-300 and PCAF after RAN treatment. ChIP-qPCR data revealed that the quantity of DNA fragments retrieved from the immunoprecipitated samples was maximum in the -83 to -192 region than further upstream and the downstream of the promoter for H3K4Me3, H3K9ac, H3K18ac and H3K9me3. Conclusions RAN-mediated pRb-inactivation induced securin upregulation, a putative E2F1 target, by inducing misregulation in chromatin remodeling in its promoter region, which led to transcriptional activation and subsequent development of chromosomal instability. Therefore, present results have led to the hypothesis that RAN-induced changes in the epigenetic landscape, securin overexpression and subsequent elevation of chromosomal instability is probably byproducts of inactivation of the pRb pathway.

2022 ◽  
Vol 12 ◽  
Suyeon Kim ◽  
Seong-Im Park ◽  
Hyeokjin Kwon ◽  
Mi Hyeon Cho ◽  
Beom-Gi Kim ◽  

Drought and salinity are major important factors that restrain growth and productivity of rice. In plants, many really interesting new gene (RING) finger proteins have been reported to enhance drought and salt tolerance. However, their mode of action and interacting substrates are largely unknown. Here, we identified a new small RING-H2 type E3 ligase OsRF1, which is involved in the ABA and stress responses of rice. OsRF1 transcripts were highly induced by ABA, salt, or drought treatment. Upregulation of OsRF1 in transgenic rice conferred drought and salt tolerance and increased endogenous ABA levels. Consistent with this, faster transcriptional activation of key ABA biosynthetic genes, ZEP, NCED3, and ABA4, was observed in OsRF1-OE plants compared with wild type in response to drought stress. Yeast two-hybrid assay, BiFC, and co-immunoprecipitation analysis identified clade A PP2C proteins as direct interacting partners with OsRF1. In vitro ubiquitination assay indicated that OsRF1 exhibited E3 ligase activity, and that it targeted OsPP2C09 protein for ubiquitination and degradation. Cell-free degradation assay further showed that the OsPP2C09 protein is more rapidly degraded by ABA in the OsRF1-OE rice than in the wild type. The combined results suggested that OsRF1 is a positive player of stress responses by modulating protein stability of clade A PP2C proteins, negative regulators of ABA signaling.

Noriyoshi Akiyama ◽  
Shoma Sato ◽  
Kentaro M Tanaka ◽  
Takaomi Sakai ◽  
Aya Takahashi

Abstract The spatiotemporal regulation of gene expression is essential to ensure robust phenotypic outcomes. Pigmentation patterns in Drosophila are determined by pigments biosynthesized in the developing epidermis and the cis-regulatory elements (CREs) of the genes involved in this process are well-characterized. Here we report that the known primary epidermal enhancer (priEE) is dispensable for the transcriptional activation of ebony (involved in light-colored pigment synthesis) in the developing epidermis of D. melanogaster. The evidence was obtained by introducing an approximately 1 kbp deletion at the priEE by genome editing. The effect of the priEE deletion on pigmentation and on the endogenous expression pattern of a mCherry-fused ebony allele was examined in the abdomen. The expression levels of the mCherry-fused ebony in the priEE-deleted strains were slightly higher than that of the control strain, indicating that the sequences outside the priEE have an ability to drive an expression of this gene in the epidermis. Interestingly, the priEE deletion resulted in a derepression of this gene in the dorsal midline of the abdominal tergites, where dark pigmentation is present in the wild-type individuals. This indicated that the priEE fragment contains a silencer. Furthermore, the endogenous expression pattern of ebony in the two additional strains with partially deleted priEE revealed that the silencer resides within a 351-bp fragment in the 5' portion of the priEE. These results demonstrated that deletion assays combined with reporter assays are highly effective in detecting the presence of positively and negatively regulating sequences within and outside the focal CREs.

BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Yanding Zhao ◽  
Yadong Dong ◽  
Wei Hong ◽  
Chongming Jiang ◽  
Kevin Yao ◽  

AbstractChromatin accessibility is essential for transcriptional activation of genomic regions. It is well established that transcription factors (TFs) and histone modifications (HMs) play critical roles in chromatin accessibility regulation. However, there is a lack of studies that quantify these relationships. Here we constructed a two-layer model to predict chromatin accessibility by integrating DNA sequence, TF binding, and HM signals. By applying the model to two human cell lines (GM12878 and HepG2), we found that DNA sequences had limited power for accessibility prediction, while both TF binding and HM signals predicted chromatin accessibility with high accuracy. According to the HM model, HM features determined chromatin accessibility in a cell line shared manner, with the prediction power attributing to five core HM types. Results from the TF model indicated that chromatin accessibility was determined by a subset of informative TFs including both cell line-specific and generic TFs. The combined model of both TF and HM signals did not further improve the prediction accuracy, indicating that they provide redundant information in terms of chromatin accessibility prediction. The TFs and HM models can also distinguish the chromatin accessibility of proximal versus distal transcription start sites with high accuracy.

2022 ◽  
Vol 22 (1) ◽  
Xueyuan Han ◽  
Xiaopeng Wei ◽  
Wenjing Lu ◽  
Qiong Wu ◽  
Linchun Mao ◽  

Abstract Background Our previous study has demonstrated that the transcription of AchnKCS involved in suberin biosynthesis was up-regulated by exogenous abscisic acid (ABA) during the wound suberization of kiwifruit, but the regulatory mechanism has not been fully elucidated. Results Through subcellular localization analysis in this work, AchnbZIP29 and AchnMYB70 transcription factors were observed to be localized in the nucleus. Yeast one-hybrid and dual-luciferase assay proved the transcriptional activation of AchnMYB70 and transcriptional suppression of AchnbZIP29 on AchnKCS promoter. Furthermore, the transcription level of AchnMYB70 was enhanced by ABA during wound suberization of kiwifruit, but AchnbZIP29 transcription was reduced by ABA. Conclusions Therefore, it was believed that ABA enhanced the transcriptional activation of AchnMYB70 on AchnKCS by increasing AchnMYB70 expression. On the contrary, ABA relieved the inhibitory effect of AchnbZIP29 on transcription of AchnKCS by inhibiting AchnbZIP29 expression. These results gave further insight into the molecular regulatory network of ABA in wound suberization of kiwifruit.

Gut ◽  
2022 ◽  
pp. gutjnl-2021-326050
Fubo Ji ◽  
Jianjuan Zhang ◽  
Niya Liu ◽  
Yuanzhuo Gu ◽  
Yan Zhang ◽  

ObjectsThe incidence of hepatocellular carcinoma (HCC) shows an obvious male dominance in rodents and humans. We aimed to identify the key autosomal liver-specific sex-related genes and investigate their roles in hepatocarcinogenesis.DesignTwo HCC cohorts (n=551) with available transcriptome and metabolome data were used. Class comparisons of omics data and ingenuity pathway analysis were performed to explore sex-related molecules and their associated functions. Functional assays were employed to investigate roles of the key candidates, including cellular assays, molecular assays and multiple orthotopic HCC mouse models.ResultsA global comparison of multiple omics data revealed 861 sex-related molecules in non-tumour liver tissues between female and male HCC patients, which denoted a significant suppression of cancer-related diseases and functions in female liver than male. A member of cytochrome P450 family, CYP39A1, was one of the top liver-specific candidates with significantly higher levels in female vs male liver. In HCC tumours, CYP39A1 expression was dramatically reduced in over 90% HCC patients. Exogenous CYP39A1 significantly blocked tumour formation in both female and male mice and partially reduced the sex disparity of hepatocarcinogenesis. The HCC suppressor role of CYP39A1 did not rely on its known P450 enzyme activity but its C-terminal region, by which CYP39A1 impeded the transcriptional activation activity of c-Myc, leading to a significant inhibition of hepatocarcinogenesis.ConclusionsThe liver-specific CYP39A1 with female-preferential expression was a strong suppressor of HCC development. Strategies to up-regulate CYP39A1 might be promising methods for HCC treatment in both women and men in future.

2022 ◽  
Vol 20 (1) ◽  
Yuxiang Lin ◽  
Jie Zhang ◽  
Yan Li ◽  
Wenhui Guo ◽  
Lili Chen ◽  

Abstract Background Cytidine nucleotide triphosphate synthase 1 (CTPS1) is a CTP synthase which play critical roles in DNA synthesis. However, its biological regulation and mechanism in triple-negative breast cancer (TNBC) has not been reported yet. Methods The expression of CTPS1 in TNBC tissues was determined by GEO, TCGA databases and immunohistochemistry (IHC). The effect of CTPS1 on TNBC cell proliferation, migration, invasion, apoptosis and tumorigenesis were explored in vivo and in vitro. In addition, the transcription factor Y-box binding protein 1 (YBX1) was identified by bioinformatics methods, dual luciferase reporter and chromatin immunoprecipitation (CHIP) assays. Pearson correlation analysis was utilized to assess the association between YBX1 and CTPS1 expression. Results CTPS1 expression was significantly upregulated in TNBC tissues and cell lines. Higher CTPS1 expression was correlated with a poorer disease-free survival (DFS) and overall survival (OS) in TNBC patients. Silencing of CTPS1 dramatically inhibited the proliferation, migration, invasion ability and induced apoptosis of MDA-MB-231 and HCC1937 cells. Xenograft tumor model also indicated that CTPS1 knockdown remarkably reduced tumor growth in mice. Mechanically, YBX1 could bind to the promoter of CTPS1 to promote its transcription. Furthermore, the expression of YBX1 was positively correlated with CTPS1 in TNBC tissues. Rescue experiments confirmed that the enhanced cell proliferation and invasion ability induced by YBX1 overexpression could be reversed by CTPS1 knockdown. Conclusion Our data demonstrate that YBX1/CTPS1 axis plays an important role in the progression of TNBC. CTPS1 might be a promising prognosis biomarker and potential therapeutic target for patients with triple-negative breast cancer.

2022 ◽  
Vol 23 (2) ◽  
pp. 606
Yongbo Hong ◽  
Hui Wang ◽  
Yizhou Gao ◽  
Yan Bi ◽  
Xiaohui Xiong ◽  

We previously showed that overexpression of the rice ERF transcription factor gene OsBIERF3 in tobacco increased resistance against different pathogens. Here, we report the function of OsBIERF3 in rice immunity and abiotic stress tolerance. Expression of OsBIERF3 was induced by Xanthomonas oryzae pv. oryzae, hormones (e.g., salicylic acid, methyl jasmonate, 1-aminocyclopropane-1-carboxylic acid, and abscisic acid), and abiotic stress (e.g., drought, salt and cold stress). OsBIERF3 has transcriptional activation activity that depends on its C-terminal region. The OsBIERF3-overexpressing (OsBIERF3-OE) plants exhibited increased resistance while OsBIERF3-suppressed (OsBIERF3-Ri) plants displayed decreased resistance to Magnaporthe oryzae and X. oryzae pv. oryzae. A set of genes including those for PRs and MAPK kinases were up-regulated in OsBIERF3-OE plants. Cell wall biosynthetic enzyme genes were up-regulated in OsBIERF3-OE plants but down-regulated in OsBIERF3-Ri plants; accordingly, cell walls became thicker in OsBIERF3-OE plants but thinner in OsBIERF3-Ri plants than WT plants. The OsBIERF3-OE plants attenuated while OsBIERF3-Ri plants enhanced cold tolerance, accompanied by altered expression of cold-responsive genes and proline accumulation. Exogenous abscisic acid and 1-aminocyclopropane-1-carboxylic acid, a precursor of ethylene biosynthesis, restored the attenuated cold tolerance in OsBIERF3-OE plants while exogenous AgNO3, an inhibitor of ethylene action, significantly suppressed the enhanced cold tolerance in OsBIERF3-Ri plants. These data demonstrate that OsBIERF3 positively contributes to immunity against M. oryzae and X. oryzae pv. oryzae but negatively regulates cold stress tolerance in rice.

2022 ◽  
Vol 23 (1) ◽  
pp. 564
Yang Xu ◽  
Shenghao Zou ◽  
Hao Zeng ◽  
Wei Wang ◽  
Bin Wang ◽  

Stripe rust is one of the most devastating diseases in wheat. Nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domain receptors (NLRs) recognize pathogenic effectors and trigger plant immunity. We previously identified a unique NLR protein YrU1 in the diploid wheat Triticum urartu, which contains an N-terminal ANK domain and a C-terminal WRKY domain and confers disease resistance to stripe rust fungus Puccinia striiformis f. sp. Tritici (Pst). However, how YrU1 functions in disease resistance is not clear. In this study, through the RNA-seq analysis, we found that the expression of a NAC member TuNAC69 was significantly up-regulated after inoculation with Pst in the presence of YrU1. TuNAC69 was mainly localized in the nucleus and showed transcriptional activation in yeast. Knockdown TuNAC69 in diploid wheat Triticum urartu PI428309 that contains YrU1 by virus-induced gene silencing reduced the resistance to stripe rust. In addition, overexpression of TuNAC69 in Arabidopsis enhanced the resistance to powdery mildew Golovinomyces cichoracearum. In summary, our study indicates that TuNAC69 participates in the immune response mediated by NLR protein YrU1, and likely plays an important role in disease resistance to other pathogens.

Sign in / Sign up

Export Citation Format

Share Document