pancreatic beta cells
Recently Published Documents


TOTAL DOCUMENTS

1795
(FIVE YEARS 438)

H-INDEX

91
(FIVE YEARS 10)

Diabetologia ◽  
2022 ◽  
Author(s):  
Lucie Oberhauser ◽  
Cecilia Jiménez-Sánchez ◽  
Jesper Grud Skat Madsen ◽  
Dominique Duhamel ◽  
Susanne Mandrup ◽  
...  

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 104
Author(s):  
Elisa Fernández-Millán ◽  
Carlos Guillén

Type 2 diabetes (T2D) results from impaired beta-cell function and insufficient beta-cell mass compensation in the setting of insulin resistance. Current therapeutic strategies focus their efforts on promoting the maintenance of functional beta-cell mass to ensure appropriate glycemic control. Thus, understanding how beta-cells communicate with metabolic and non-metabolic tissues provides a novel area for investigation and implicates the importance of inter-organ communication in the pathology of metabolic diseases such as T2D. In this review, we provide an overview of secreted factors from diverse organs and tissues that have been shown to impact beta-cell biology. Specifically, we discuss experimental and clinical evidence in support for a role of gut to beta-cell crosstalk, paying particular attention to bacteria-derived factors including short-chain fatty acids, lipopolysaccharide, and factors contained within extracellular vesicles that influence the function and/or the survival of beta cells under normal or diabetogenic conditions.


2022 ◽  
Vol 10 (1) ◽  
pp. 32-40
Author(s):  
Dae Sik Haam ◽  
Dong-Yeop Shin ◽  
Hak Yong Lee ◽  
Young Mi Park ◽  
Byeong-Soo Kim ◽  
...  

2022 ◽  
Vol 8 ◽  
Author(s):  
Yuhua Gao ◽  
Weijun Guan ◽  
Chunyu Bai

In this study, we isolated and cultured pancreatic ductal cells from canines and revealed the possibility for using them to differentiate into functional pancreatic beta cells in vitro. Passaged pancreatic ductal cells were induced to differentiate into beta-like pancreatic islet cells using a mixture of induced factors. Differentiated pancreatic ductal cells were analyzed based on intracellular insulin granules using transmission electron microscopy, the expression of insulin and glucagon using immunofluorescence, and glucose-stimulated insulin secretion using ELISA. Our data revealed that differentiated pancreatic ductal cells not only expressed insulin and glucagon but also synthesized insulin granules and secreted insulin at different glucose concentrations. Our study might assist in the development of effective cell therapies for the treatment of type 1 diabetes mellitus in dogs.


2022 ◽  
pp. 872-901
Author(s):  
Ruksar Salim Damji ◽  
Shamiha Chowdhury ◽  
Zaib-Un-Nisa Munawar Hussain

Diabetes mellitus is a chronic metabolic disorder which is at present rapidly growing to an alarming epidemic level. Various pathogenic processes are involved in the development of diabetes mellitus. This spectrums from autoimmune destruction of pancreatic beta cells with consequent deficiency of insulin to abnormalities that lead to resistance to the action of insulin. In the 21st century, the astounding rise in obesity, poor diet, and inactive lifestyles have increased the prevalence dramatically. Although several therapies are in use, Western medications are associated with adverse drug reactions and high cost of treatment. Therefore, there is currently a growing interest in herbal medicines to replace or supplement the Western medications. Extensive research is essential to enhance diagnoses, treatment, and to lessen healthcare expenditures. This chapter provides an overview of the classification, diagnosis, symptoms, complications, and economic burden of diabetes mellitus. Additionally, the authors discuss the current and upcoming therapies to treat this metabolic disorder.


Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 91
Author(s):  
Henrik Hill ◽  
Andris Elksnis ◽  
Per Lundkvist ◽  
Kumari Ubhayasekera ◽  
Jonas Bergquist ◽  
...  

Gamma-aminobutyric acid (GABA) is an important inhibitory neurotransmitter in the central nervous system (CNS) and outside of the CNS, found in the highest concentrations in immune cells and pancreatic beta-cells. GABA is gaining increasing interest in diabetes research due to its immune-modulatory and beta-cell stimulatory effects and is a highly interesting drug candidate for the treatment of type 1 diabetes (T1D). GABA is synthesized from glutamate by glutamic acid decarboxylase (GAD), one of the targets for autoantibodies linked to T1D. Using mass spectrometry, we have quantified the endogenous circulating levels of GABA in patients with new-onset and long-standing T1D and found that the levels are unaltered when compared to healthy controls, i.e., T1D patients do not have a deficit of systemic GABA levels. In T1D, GABA levels were negatively correlated with IL-1 beta, IL-12, and IL-15 15 and positively correlated to levels of IL-36 beta and IL-37. Interestingly, GABA levels were also correlated to the levels of GAD-autoantibodies. The unaltered levels of GABA in T1D patients suggest that the GABA secretion from beta-cells only has a minor impact on the circulating systemic levels. However, the local levels of GABA could be altered within pancreatic islets in the presence of GAD-autoantibodies.


2021 ◽  
Author(s):  
Tianqin Xie ◽  
Qiming Huang ◽  
Qiulang Huang ◽  
Haixia Zeng ◽  
Jianping Liu

Abstract ObjectiveIn recent years, cell therapy has become a new research direction in the treatment of diabetes. However, the underlying molecular mechanisms of mesenchymal stem cells (MSCs) participate in such treatment has not been clarified. MethodsIn this study, human umbilical cord mesenchymal stem cells (HUC-MSCs) isolated from newborns were progressively induced into insulin-producing cells (IPCs) using small molecules. HUC-MSCs (S0) and four induced stage (S1-S4) samples were prepared. We then performed transcriptome sequencing experiments to obtain the dynamic expression profiles of both mRNAs and long noncoding RNAs (lncRNAs). ResultsWe found that the number of differentially expressed lncRNAs and mRNAs showed a decreasing trend during differentiation. Gene Ontology (GO) analysis showed that the target genes of differentially expressed lncRNAs were associated with translation, cell adhesion, and cell connection. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the NF-KB signaling pathway, MAPK signaling pathway, HIPPO signaling pathway, PI3K-Akt signaling pathway, and p53 signaling pathway were enriched in these differentially expressed lncRNA-targeting genes. We also found that the coexpression of the lncRNA: CTBP1-AS2 with the PROX1, and the lncRNAs AC009014.3 and GS1-72M22.1 with the mRNA JARID2 was related to the development of pancreatic beta cells. Moreover, the coexpression of the lncRNAs :XLOC_ 050969, LINC00883, XLOC_050981, XLOC_050925, MAP3K14- AS1, RP11-148K1.12, and CTD2020K17.3 with p53, regulated insulin secretion by pancreatic beta cells.ConclusionThis research revealed that HUC-MSCs combined with small molecule compounds were successfully induced into IPCs. Differentially expressed lncRNAs may regulate the insulin secretion of pancreatic beta cells by regulating multiple signaling pathways. The lncRNAs: AC009014.3,Gs1-72m21.1 and CTBP1-AS2 may be involved in the development of pancreatic beta cells, and the lncRNAs: XLOC_050969, LINC00883, XLOC_050981, XLOC_050925, MAP3K14-AS1, RP11-148K1.12, and CTD2020K17.3 may be involved in regulating the insulin secretion of pancreatic beta cells, thus providing a lncRNA catalog for future research regarding the mechanism of the transdifferentiation of HUC-MSCs into IPCs. It also provides a new theoretical basis for the transplantation of insulin-producing cells into diabetic patients in the future.


2021 ◽  
Author(s):  
Thomas W Rosahl ◽  
Lynn A Hyde ◽  
Patrick T Reilly ◽  
Marie-France Champy ◽  
Kristin J Belongie ◽  
...  

Beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is required for the production of toxic amyloid peptides and is highly expressed in the brain, but also to a lesser extent in major peripheral organs such as muscle and liver. In contrast, BACE2 is mainly expressed in peripheral tissues and is enriched in pancreatic beta cells, where it regulates beta-cell function and mass. Previous reports demonstrated that loss of BACE1 function decreases body weight, protects against diet-induced obesity and enhances insulin sensitivity in mice, whereas mice lacking Bace2 exhibit reduced blood glucose levels, improved intraperitoneal glucose tolerance and increased beta-cell mass. Impaired glucose homeostasis and insulin resistance are hallmarks of type 2 diabetes and have been implicated in Alzheimers disease. Therefore, we tested the contribution of the individual BACE isoforms to those metabolic phenotypes by placing Bace1 knockout (KO), Bace2 KO, Bace1/2 double knockout (dKO) and wild-type (WT) mice on a high-fat high-cholesterol diet (HFD) for 16 weeks. Bace1 KO and Bace1/2 dKO mice showed decreased body weight and improved glucose tolerance and insulin resistance vs. WT mice. Conversely, Bace2 KO mice did not show any significant differences in body weight, glucose tolerance or insulin resistance under our experimental conditions. Finally, subchronic MBi-3 mediated BACE1/2 inhibition in mice in conjunction with a HFD resulted in a modest improvement of glucose tolerance. Our data indicate that lack of BACE1, but not BACE2, function contributes mainly to the metabolic phenotypic changes observed in Bace1/2 dKO mice, suggesting that inhibition of BACE1 has the greater role (vs. BACE2) in any potential improvements in metabolic homeostasis.


Diabetologia ◽  
2021 ◽  
Author(s):  
Estefania Quesada-Masachs ◽  
Samuel Zilberman ◽  
Sakthi Rajendran ◽  
Tiffany Chu ◽  
Sara McArdle ◽  
...  

2021 ◽  
Vol 10 ◽  
Author(s):  
Saba Albetawi ◽  
Amer Abdalhafez ◽  
Ala Abu-Zaid

: Repaglinide is an antidiabetic drug that works by stimulating insulin secretion from pancreatic beta cells. Repaglinide is practically insoluble in water with a water solubility of 34 µg/mL at 37 ˚C, and it has a high absorption rate from the gastrointestinal tract following oral administration since the log P value of repaglinide is 3.97. The low aqueous solubility and the high permeability of repaglinide represent a typical behavior for drugs that belong to class II Biopharmaceutical Classification System (BCS II). Managing type-2 diabetes mellitus with repaglinide is considered a burdensome therapy, as it requires frequent dosing of repaglinide before each meal to maintain its therapeutic plasma concentration due to its short plasma half-life of approximately one hour. Hence the present review aims to discuss thoroughly the various approaches investigated in recent years to develop drug delivery systems that improve oral delivery of repaglinide, including nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers, sustained-release hydrophilic matrix, floating microspheres, and nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document