scholarly journals Cholinergic amacrine cells of the rabbit retina contain glutamate decarboxylase and gamma-aminobutyrate immunoreactivity.

1988 ◽  
Vol 85 (16) ◽  
pp. 6187-6191 ◽  
Author(s):  
N. Brecha ◽  
D. Johnson ◽  
L. Peichl ◽  
H. Wassle
1992 ◽  
Vol 8 (2) ◽  
pp. 97-106 ◽  
Author(s):  
David M. Linn ◽  
Stephen C. Massey

AbstractThe cholinergic amacrine cells of the rabbit retina may be labeled with [3H]-Ch and the activity of the cholinergic population monitored by following the release of [3H]-ACh. We have tested the effect of muscimol, a potent GABAA agonist, on (1) the light-evoked release of ACh, presumably mediated via bipolar cells, which are known to have a direct input to the cholinergic amacrine cells and (2) ACh release produced by exogenous glutamate analogs that probably have a direct effect on cholinergic amacrine cells. Muscimol blocked the light-evoked release of ACh with an IC50 of 1.0 μM. In contrast, ACh release produced by nonsaturating doses of kainate or NMDA was not reduced even by 100 μM muscimol. Thus, we have been unable to demonstrate a direct effect of GABA on the cholinergic amacrine cells.GABA antagonists, such as picrotoxin, caused a large increase in the base release and potentiated the light-evoked release of ACh. Both these effects were abolished by DNQX, a kainate antagonist that blocks the input to cholinergic amacine cells from bipolar cells. DNQX blocked the effects of picrotoxin even when controls showed that the mechanism of ACh release was still functional. Together, these results imply that the dominant site for the GABA-mediated inhibition of ACh release is on the bipolar cell input to the cholinergic amacrine cells. This is consistent with previous anatomical and physiological evidence that bipolar cells receive negative feedback from GABA amacrine cells.


1988 ◽  
Vol 438 (1-2) ◽  
pp. 369-373 ◽  
Author(s):  
David I. Vaney ◽  
Heather M. Young

1995 ◽  
Vol 12 (6) ◽  
pp. 1053-1061 ◽  
Author(s):  
Christopher Brandon ◽  
Mark H. Criswell

AbstractThe cholinergic identity of retinal starburst amacrine neurons is well established, but recent evidence suggests that these cells are GABAergic as well. Confirmation of this dual transmitter function requires the demonstration of glutamate decarboxylase (GAD), the biosynthetic enzyme for GABA, within starburst cells. The current work was undertaken to determine whether rabbit retinal starburst amacrine neurons contain either of the two known isoforms of GAD. To do this, we have examined the localization of the following: (1) the 65-kDa isoform of GAD; (2) the 67-kDa isoform of GAD; (3) choline acetyltransferase; and (4) the fluorescent dye DAPI, a marker for cholinergic amacrine cells. In addition, we labeled displaced starburst neurons directly, by injecting them with Lucifer Yellow in vitro. Four strata within the inner plexiform layer contained immunoreactive GAD65. A non-GAD65-immunoreactive zone separated the two innermost strata (G3 and G4); this zone contained (1) the dendrites of individual Lucifer Yellow-injected, displaced starburst amacrine cells; (2) dendrites immunoreactive for choline acetyltransferase; and (3) processes of DAPI-labeled amacrine cells. Immunoreactive GAD67 appeared in the same strata that contained GAD65, and in at least two additional strata, one of which lay at precisely the same depth as the proximal cholinergic stratum. In addition, the somas of displaced starburst cells were strongly immunoreactive for GAD67, but not for GAD65. These results demonstrate (1) that displaced starburst amacrine cells contain the 67-kDa isoform of GAD, but not the 65-kDa isoform; and (2) that the dendrites of starburst (67-kDa GAD) amacrines, and the dendrites of 65-kDa-GAD-containing amacrines, occupy different strata within the inner plexiform layer. Thus, displaced starburst cells do contain GAD, and can, presumably, manufacture GABA. The reasons for their preferential use of the 67-kDa GAD isoform remain to be elucidated.


Sign in / Sign up

Export Citation Format

Share Document