gaba antagonists
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 0)

H-INDEX

26
(FIVE YEARS 0)

2012 ◽  
Vol 3 (4) ◽  
pp. 293-301 ◽  
Author(s):  
Izumi Yamamoto ◽  
Jane E. Carland ◽  
Katherine Locock ◽  
Navnath Gavande ◽  
Nathan Absalom ◽  
...  

Neuropeptides ◽  
2009 ◽  
Vol 43 (3) ◽  
pp. 207-212 ◽  
Author(s):  
A. Marazioti ◽  
C. Spyraki ◽  
K. Thermos

2005 ◽  
Vol 93 (6) ◽  
pp. 3390-3400 ◽  
Author(s):  
W. R. D’Angelo ◽  
S. J. Sterbing ◽  
E.-M. Ostapoff ◽  
S. Kuwada

A major cue for the localization of sound in space is the interaural time difference (ITD). We examined the role of inhibition in the shaping of ITD responses in the inferior colliculus (IC) by iontophoretically ejecting γ-aminobutyric acid (GABA) antagonists and GABA itself using a multibarrel pipette. The GABA antagonists block inhibition, whereas the applied GABA provides a constant level of inhibition. The effects on ITD responses were evaluated before, during and after the application of the drugs. If GABA-mediated inhibition is involved in shaping ITD tuning in IC neurons, then applying additional amounts of this inhibitory transmitter should alter ITD tuning. Indeed, for almost all neurons tested, applying GABA reduced the firing rate and consequently sharpened ITD tuning. Conversely, blocking GABA-mediated inhibition increased the activity of IC neurons, often reduced the signal-to-noise ratio and often broadened ITD tuning. Blocking GABA could also alter the shape of the ITD function and shift its peak suggesting that the role of inhibition is multifaceted. These effects indicate that GABAergic inhibition at the level of the IC is important for ITD coding.


2005 ◽  
Vol 93 (6) ◽  
pp. 3120-3126 ◽  
Author(s):  
Peiyuan Wang ◽  
Malcolm M. Slaughter

Glycinergic and GABAergic inhibition are juxtaposed at one retinal synaptic layer yet likely perform different functions. These functions have usually been evaluated using receptor antagonists. In examining retinal glycine receptors, we were surprised to find that commonly used concentrations of GABA antagonists blocked significant fractions of the glycine current. In retinal amacrine and ganglion cells, the competitive GABAA receptor antagonists (bicuculline and SR95531) were also competitive GlyR antagonists. Picrotoxinin produced a noncompetitive inhibition of retinal GlyRs. [1,2,5,6-tetrahydropyridine-4-yl] methylphosphinic acid, the GABACR antagonist, did not inhibit glycine receptors. All three GABAA receptor antagonists were competitive inhibitors of homomeric α1 or α2 GlyRs expressed in human embryonic kidney cells (HEK293) cells. Interestingly, bicuculline was much more effective at α2 GlyRs and might be used to separate glycine receptor subtypes. Thus commonly used concentrations of GABA antagonists do not unambiguously differentiate GABA and glycine pathways. Picrotoxinin inhibition of GABAC receptors requires two amino acids in the second transmembrane region (TM2): 2′ serine and 6′ threonine. Although TM2 regions in GABA and glycine receptors are highly homologous, neither 2′ serine nor 6′ threonine is essential for picrotoxinin sensitivity in glycine receptors.


1997 ◽  
Vol 14 (5) ◽  
pp. 939-948 ◽  
Author(s):  
Stephen C. Massey ◽  
David M. Linn ◽  
Christopher A. Kittila ◽  
Wajid Mirza

AbstractGABA is a major inhibitory neurotransmitter in the mammalian retina and it acts at many different sites via a variety of postsynaptic receptors. These include GABAA receptors and bicuculline-resistant GABAC receptors. The release of acetylcholine (ACh) is inhibited by GABA and strongly potentiated by GABA antagonists. In addition, GABA appears to mediate the null inhibition which is responsible for the mechanism of directional selectivity in certain ganglion cells. We have used these two well-known examples of GABA inhibition to compare three GABA antagonists and assess the contributions of GABAA and GABAC receptors. All three GABA antagonists stimulated ACh release by as much as ten-fold. By this measure, the ED50s for SR-95531, bicuculline, and picrotoxin were 0.8, 7.0, and 14 μM, respectively. Muscimol, a potent GABAA agonist, blocked the effects of SR-95531 and bicuculline, but not picrotoxin. This indicates that SR-95531 and bicuculline are competitive antagonists at the GABAA receptor, while picrotoxin blocks GABAA responses by acting at a different, nonreceptor site such as the chloride channel. In the presence of a saturating dose of SR-95531 to completely block GABAA receptors, picrotoxin caused a further increase in the release of ACh. This indicates that picrotoxin potentiates ACh release by a mechanism in addition to the block of GABAA responses, possibly by also blocking GABAC receptors, which have been associated with bipolar cells. All three GABA antagonists abolished directionally selective responses from ON/OFF directional-selective (DS) ganglion cells. In this system, the ED50s for SR-95531, bicuculline, and picrotoxin were 0.7 μM, 8 μM, and 94.6 μM, respectively. The results with SR-95531 and bicuculline indicate that GABAA receptors mediate the inhibition responsible for directional selectivity. The addition of picrotoxin to a high dose of SR-95531 caused no further increase in firing rate. The comparatively high dose required for picrotoxin also suggests that GABAC receptors do not contribute to directional selectivity. This in turn suggests that feedforward GABAA inhibition, as opposed to feedback at bipolar terminals, is responsible for the null inhibition underlying directional selectivity.


Sign in / Sign up

Export Citation Format

Share Document