GABA inhibits ACh release from the rabbit retina: A direct effect or feedback to bipolar cells?

1992 ◽  
Vol 8 (2) ◽  
pp. 97-106 ◽  
Author(s):  
David M. Linn ◽  
Stephen C. Massey

AbstractThe cholinergic amacrine cells of the rabbit retina may be labeled with [3H]-Ch and the activity of the cholinergic population monitored by following the release of [3H]-ACh. We have tested the effect of muscimol, a potent GABAA agonist, on (1) the light-evoked release of ACh, presumably mediated via bipolar cells, which are known to have a direct input to the cholinergic amacrine cells and (2) ACh release produced by exogenous glutamate analogs that probably have a direct effect on cholinergic amacrine cells. Muscimol blocked the light-evoked release of ACh with an IC50 of 1.0 μM. In contrast, ACh release produced by nonsaturating doses of kainate or NMDA was not reduced even by 100 μM muscimol. Thus, we have been unable to demonstrate a direct effect of GABA on the cholinergic amacrine cells.GABA antagonists, such as picrotoxin, caused a large increase in the base release and potentiated the light-evoked release of ACh. Both these effects were abolished by DNQX, a kainate antagonist that blocks the input to cholinergic amacine cells from bipolar cells. DNQX blocked the effects of picrotoxin even when controls showed that the mechanism of ACh release was still functional. Together, these results imply that the dominant site for the GABA-mediated inhibition of ACh release is on the bipolar cell input to the cholinergic amacrine cells. This is consistent with previous anatomical and physiological evidence that bipolar cells receive negative feedback from GABA amacrine cells.

2005 ◽  
Vol 22 (4) ◽  
pp. 535-549 ◽  
Author(s):  
JIAN ZHANG ◽  
WEI LI ◽  
HIDEO HOSHI ◽  
STEPHEN L. MILLS ◽  
STEPHEN C. MASSEY

The correlation between cholinergic sensitivity and the level of stratification for ganglion cells was examined in the rabbit retina. As examples, we have used ON or OFF α ganglion cells and ON/OFF directionally selective (DS) ganglion cells. Nicotine, a cholinergic agonist, depolarized ON/OFF DS ganglion cells and greatly enhanced their firing rates but it had modest excitatory effects on ON or OFF α ganglion cells. As previously reported, we conclude that DS ganglion cells are the most sensitive to cholinergic drugs. Confocal imaging showed that ON/OFF DS ganglion cells ramify precisely at the level of the cholinergic amacrine cell dendrites, and co-fasciculate with the cholinergic matrix of starburst amacrine cells. However, neither ON or OFF α ganglion cells have more than a chance association with the cholinergic matrix. Z-axis reconstruction showed that OFF α ganglion cells stratify just below the cholinergic band in sublamina a while ON α ganglion cells stratify just below cholinergic b. The latter is at the same level as the terminals of calbindin bipolar cells. Thus, the calbindin bipolar cell appears to be a prime candidate to provide the bipolar cell input to ON α ganglion cells in the rabbit retina. We conclude that the precise level of stratification is correlated with the strength of cholinergic input. Alpha ganglion cells receive a weak cholinergic input and they are narrowly stratified just below the cholinergic bands.


2017 ◽  
Vol 34 ◽  
Author(s):  
PATRICK W. KEELEY ◽  
JASON J. KIM ◽  
SAMMY C.S. LEE ◽  
SILKE HAVERKAMP ◽  
BENJAMIN E. REESE

AbstractRetinal bipolar cells spread their dendritic arbors to tile the retinal surface, extending them to the tips of the dendritic fields of their homotypic neighbors, minimizing dendritic overlap. Such uniform nonredundant dendritic coverage of these populations would suggest a degree of spatial order in the properties of their somal distributions, yet few studies have examined the patterning in retinal bipolar cell mosaics. The present study examined the organization of two types of cone bipolar cells in the mouse retina, the Type 2 cells and the Type 4 cells, and compared their spatial statistical properties with those of the horizontal cells and the cholinergic amacrine cells, as well as to random simulations of cells matched in density and constrained by soma size. The Delauney tessellation of each field was computed, from which nearest neighbor distances and Voronoi domain areas were extracted, permitting a calculation of their respective regularity indexes (RIs). The spatial autocorrelation of the field was also computed, from which the effective radius and packing factor (PF) were determined. Both cone bipolar cell types were found to be less regular and less efficiently packed than either the horizontal cells or cholinergic amacrine cells. Furthermore, while the latter two cell types had RIs and PFs in excess of those for their matched random simulations, the two types of cone bipolar cells had spatial statistical properties comparable to random distributions. An analysis of single labeled cone bipolar cells revealed dendritic arbors frequently skewed to one side of the soma, as would be expected from a randomly distributed population of cells with dendrites that tile. Taken together, these results suggest that, unlike the horizontal cells or cholinergic amacrine cells which minimize proximity to one another, cone bipolar cell types are constrained only by their physical size.


1999 ◽  
Vol 16 (4) ◽  
pp. 653-665 ◽  
Author(s):  
DAIYAN XIN ◽  
STEWART A. BLOOMFIELD

We studied the light-evoked responses of AII amacrine cells in the rabbit retina under dark- and light-adapted conditions. In contrast to the results of previous studies, we found that AII cells display robust responses to light over a 6–7 log unit intensity range, well beyond the operating range of rod photoreceptors. Under dark adaptation, AII cells showed an ON-center/OFF-surround receptive-field organization. The intensity–response profile of the center-mediated response component followed a dual-limbed sigmoidal function indicating a transition from rod to cone mediation as stimulus intensities were increased. Following light adaptation, the receptive-field organization of AII cells changed dramatically. Light-adapted AII cells showed both ON- and OFF-responses to stimulation of the center receptive field, but we found no evidence for an antagonistic surround. Interestingly, the OFF-center response appeared first following rapid light adaptation and was then replaced gradually over a 1–4 min period by the emerging ON-center response component. Application of the metabotropic glutamate receptor agonist APB, the ionotropic glutamate blocker CNQX, 8-bromo-cGMP, and the nitric oxide donor SNAP all showed differential effects on the various center-mediated responses displayed by dark- and light-adapted AII cells. Taken together, these pharmacological results indicated that different synaptic circuits are responsible for the generation of the different AII cell responses. Specifically, the rod-driven ON-center responses are apparently derived from rod bipolar cell synaptic inputs, whereas the cone-driven ON-center responses arise from signals crossing the gap junctions between AII cells and ON-center cone bipolar cells. Additionally, the OFF-center response of light-adapted AII cells reflects direct synaptic inputs from OFF-center cone bipolar cells to AII dendritic processes in the distal inner plexiform layer.


1997 ◽  
Vol 14 (5) ◽  
pp. 939-948 ◽  
Author(s):  
Stephen C. Massey ◽  
David M. Linn ◽  
Christopher A. Kittila ◽  
Wajid Mirza

AbstractGABA is a major inhibitory neurotransmitter in the mammalian retina and it acts at many different sites via a variety of postsynaptic receptors. These include GABAA receptors and bicuculline-resistant GABAC receptors. The release of acetylcholine (ACh) is inhibited by GABA and strongly potentiated by GABA antagonists. In addition, GABA appears to mediate the null inhibition which is responsible for the mechanism of directional selectivity in certain ganglion cells. We have used these two well-known examples of GABA inhibition to compare three GABA antagonists and assess the contributions of GABAA and GABAC receptors. All three GABA antagonists stimulated ACh release by as much as ten-fold. By this measure, the ED50s for SR-95531, bicuculline, and picrotoxin were 0.8, 7.0, and 14 μM, respectively. Muscimol, a potent GABAA agonist, blocked the effects of SR-95531 and bicuculline, but not picrotoxin. This indicates that SR-95531 and bicuculline are competitive antagonists at the GABAA receptor, while picrotoxin blocks GABAA responses by acting at a different, nonreceptor site such as the chloride channel. In the presence of a saturating dose of SR-95531 to completely block GABAA receptors, picrotoxin caused a further increase in the release of ACh. This indicates that picrotoxin potentiates ACh release by a mechanism in addition to the block of GABAA responses, possibly by also blocking GABAC receptors, which have been associated with bipolar cells. All three GABA antagonists abolished directionally selective responses from ON/OFF directional-selective (DS) ganglion cells. In this system, the ED50s for SR-95531, bicuculline, and picrotoxin were 0.7 μM, 8 μM, and 94.6 μM, respectively. The results with SR-95531 and bicuculline indicate that GABAA receptors mediate the inhibition responsible for directional selectivity. The addition of picrotoxin to a high dose of SR-95531 caused no further increase in firing rate. The comparatively high dose required for picrotoxin also suggests that GABAC receptors do not contribute to directional selectivity. This in turn suggests that feedforward GABAA inhibition, as opposed to feedback at bipolar terminals, is responsible for the null inhibition underlying directional selectivity.


2010 ◽  
Vol 103 (1) ◽  
pp. 25-37 ◽  
Author(s):  
Erika D. Eggers ◽  
Peter D. Lukasiewicz

While connections between inhibitory interneurons are common circuit elements, it has been difficult to define their signal processing roles because of the inability to activate these circuits using natural stimuli. We overcame this limitation by studying connections between inhibitory amacrine cells in the retina. These interneurons form spatially extensive inhibitory networks that shape signaling between bipolar cell relay neurons to ganglion cell output neurons. We investigated how amacrine cell networks modulate these retinal signals by selectively activating the networks with spatially defined light stimuli. The roles of amacrine cell networks were assessed by recording their inhibitory synaptic outputs in bipolar cells that suppress bipolar cell output to ganglion cells. When the amacrine cell network was activated by large light stimuli, the inhibitory connections between amacrine cells unexpectedly depressed bipolar cell inhibition. Bipolar cell inhibition elicited by smaller light stimuli or electrically activated feedback inhibition was not suppressed because these stimuli did not activate the connections between amacrine cells. Thus the activation of amacrine cell circuits with large light stimuli can shape the spatial sensitivity of the retina by limiting the spatial extent of bipolar cell inhibition. Because inner retinal inhibition contributes to ganglion cell surround inhibition, in part, by controlling input from bipolar cells, these connections may refine the spatial properties of the retinal output. This functional role of interneuron connections may be repeated throughout the CNS.


Sign in / Sign up

Export Citation Format

Share Document