starburst amacrine cells
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 16)

H-INDEX

32
(FIVE YEARS 2)

2021 ◽  
Vol 17 (12) ◽  
pp. e1009754
Author(s):  
Elishai Ezra-Tsur ◽  
Oren Amsalem ◽  
Lea Ankri ◽  
Pritish Patil ◽  
Idan Segev ◽  
...  

Retinal direction-selectivity originates in starburst amacrine cells (SACs), which display a centrifugal preference, responding with greater depolarization to a stimulus expanding from soma to dendrites than to a collapsing stimulus. Various mechanisms were hypothesized to underlie SAC centrifugal preference, but dissociating them is experimentally challenging and the mechanisms remain debatable. To address this issue, we developed the Retinal Stimulation Modeling Environment (RSME), a multifaceted data-driven retinal model that encompasses detailed neuronal morphology and biophysical properties, retina-tailored connectivity scheme and visual input. Using a genetic algorithm, we demonstrated that spatiotemporally diverse excitatory inputs–sustained in the proximal and transient in the distal processes–are sufficient to generate experimentally validated centrifugal preference in a single SAC. Reversing these input kinetics did not produce any centrifugal-preferring SAC. We then explored the contribution of SAC-SAC inhibitory connections in establishing the centrifugal preference. SAC inhibitory network enhanced the centrifugal preference, but failed to generate it in its absence. Embedding a direction selective ganglion cell (DSGC) in a SAC network showed that the known SAC-DSGC asymmetric connectivity by itself produces direction selectivity. Still, this selectivity is sharpened in a centrifugal-preferring SAC network. Finally, we use RSME to demonstrate the contribution of SAC-SAC inhibitory connections in mediating direction selectivity and recapitulate recent experimental findings. Thus, using RSME, we obtained a mechanistic understanding of SACs’ centrifugal preference and its contribution to direction selectivity.


2021 ◽  
Vol 14 ◽  
Author(s):  
Tobias Ruff ◽  
Christian Peters ◽  
Akihiro Matsumoto ◽  
Stephan J. Ihle ◽  
Pilar Alcalá Morales ◽  
...  

The mammalian retina extracts a multitude of diverse features from the visual scene such as color, contrast, and direction of motion. These features are transmitted separately to the brain by more than 40 different retinal ganglion cell (RGC) subtypes. However, so far only a few genetic markers exist to fully characterize the different RGC subtypes. Here, we present a novel genetic Flrt3-CreERT2 knock-in mouse that labels a small subpopulation of RGCs. Using single-cell injection of fluorescent dyes in Flrt3 positive RGCs, we distinguished four morphological RGC subtypes. Anterograde tracings using a fluorescent Cre-dependent Adeno-associated virus (AAV) revealed that a subgroup of Flrt3 positive RGCs specifically project to the medial terminal nucleus (MTN), which is part of the accessory optic system (AOS) and is essential in driving reflex eye movements for retinal image stabilization. Functional characterization using ex vivo patch-clamp recordings showed that the MTN-projecting Flrt3 RGCs preferentially respond to downward motion in an ON-fashion. These neurons distribute in a regular pattern and most of them are bistratified at the level of the ON and OFF bands of cholinergic starburst amacrine cells where they express the known ON-OFF direction-selective RGC marker CART. Together, our results indicate that MTN-projecting Flrt3 RGCs represent a new functionally homogeneous AOS projecting direction-selective RGC subpopulation.


2021 ◽  
Author(s):  
Jean de Montigny ◽  
Evelyne Sernagor ◽  
Roman Bauer

Individual retinal cell types exhibit semi-regular spatial patterns called retinal mosaics. These mosaics enable uniform sampling of visual information and are formed to varying degrees across cell types. Retinal ganglion cells (RGC) and amacrine cells (including starburst amacrine cells (SAC)) are notably known to exhibit such layouts. Mechanisms responsible for the formation of such organised structures and their requirements are still not well understood. Mosaic formation follows three main principles: (1) homotypic cells prevent nearby cells from adopting the same type, (2) cell tangential migration, with homotypic cell repulsion, (3) cell death (with RGCs exhibiting high rates of apoptosis).


2021 ◽  
Author(s):  
Varsha Jain ◽  
Laura Hanson ◽  
Santhosh Sethuramanujam ◽  
Ronald G Gregg ◽  
Chi Zhang ◽  
...  

Retinal ON starburst amacrine cells (SACs) play a critical role in computing stimulus direction, partly in service of image stabilization by optokinetic nystagmus. ON SAC responses are sculpted by rich GABAergic innervation, mostly from neighbouring SACs. Surprisingly, however, we find that glycinergic narrow field amacrine cells (NACs) serve as their dominant source of inhibition during sustained activity. Although NAC inputs constitute only ~5% of inhibitory synapses to ON SACs, their distinct input patterns enable them to drive glycine inhibition during the both light increments and decrements. NAC to ON SAC inhibition appears to be mediated by ultra-slow non-canonical glycine receptors containing the α4 subunit, which effectively summate during repetitive stimulation. Glycinergic inhibition strongly decreases the output gain of the SACs, ensuring that their direction-selective output is maintained over their operating range. These results reveal an unexpected role for glycinergic pathways and receptor kinetics in modulating direction selectivity in the retina.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Qiang Chen ◽  
Robert G Smith ◽  
Xiaolin Huang ◽  
Wei Wei

Previously, we found that in the mammalian retina, inhibitory inputs onto starburst amacrine cells (SACs) are required for robust direction selectivity of On-Off direction-selective ganglion cells (On-Off DSGCs) against noisy backgrounds (Chen et al., 2016). However, the source of the inhibitory inputs to SACs and how this inhibition confers noise resilience of DSGCs are unknown. Here, we show that when visual noise is present in the background, the motion-evoked inhibition to an On-Off DSGC is preserved by a disinhibitory motif consisting of a serially connected network of neighboring SACs presynaptic to the DSGC. This preservation of inhibition by a disinhibitory motif arises from the interaction between visually evoked network dynamics and short-term synaptic plasticity at the SAC-DSGC synapse. Although the disinhibitory microcircuit is well studied for its disinhibitory function in brain circuits, our results highlight the algorithmic flexibility of this motif beyond disinhibition due to the mutual influence between network and synaptic plasticity mechanisms.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2574
Author(s):  
Rong-Shan Yan ◽  
Xiong-Li Yang ◽  
Yong-Mei Zhong ◽  
Dao-Qi Zhang

Correlated spontaneous activity in the developing retina (termed “retinal waves”) plays an instructive role in refining neural circuits of the visual system. Depolarizing (ON) and hyperpolarizing (OFF) starburst amacrine cells (SACs) initiate and propagate cholinergic retinal waves. Where cholinergic retinal waves stop, SACs are thought to be driven by glutamatergic retinal waves initiated by ON-bipolar cells. However, the properties and function of cholinergic and glutamatergic waves in ON- and OFF-SACs still remain poorly understood. In the present work, we performed whole-cell patch-clamp recordings and Ca2+ imaging from genetically labeled ON- and OFF-SACs in mouse flat-mount retinas. We found that both SAC subtypes exhibited spontaneous rhythmic depolarization during cholinergic and glutamatergic waves. Interestingly, ON-SACs had wave-induced action potentials (APs) in an age-dependent manner, but OFF-SACs did not. Simultaneous Ca2+ imaging and patch-clamp recordings demonstrated that, during a cholinergic wave, APs of an ON-SAC appeared to promote the dendritic release of acetylcholine onto neighboring ON- and OFF-SACs, which enhances their Ca2+ transients. These results advance the understanding of the cellular mechanisms underlying correlated spontaneous activity in the developing retina.


2020 ◽  
Author(s):  
Rong-Shan Yan ◽  
Xiong-Li Yang ◽  
Yong-Mei Zhong ◽  
Dao-Qi Zhang

AbstractCorrelated spontaneous activity in the developing retina (termed “retinal waves”) plays an instructive role in refining neural circuits of the visual system. Depolarizing (ON) and hyperpolarizing (OFF) starburst amacrine cells (SACs) initiate and propagate cholinergic retinal waves. Where cholinergic retinal waves stop, SACs are thought to be driven by glutamatergic retinal waves initiated by ON-bipolar cells. However, the properties and function of cholinergic and glutamatergic waves in ON- and OFF-SACs still remain poorly understood. As expected, we found that both SAC subtypes exhibited spontaneous rhythmic depolarization during cholinergic and glutamatergic waves. Interestingly, ON-SACs had wave-induced action potentials (APs) in an age-dependent manner, but OFF-SACs did not. We further found that the number of APs in ON-SACs was correlated with the amplitude of Ca2+ transients of either ON- or OFF-SACs during cholinergic retinal waves. These results advance the understanding of the cellular mechanisms underlying correlated spontaneous activity in the developing retina.


Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1157
Author(s):  
Ahmed Salman ◽  
Samuel B. Hutton ◽  
Tutte Newall ◽  
Jennifer A. Scott ◽  
Helen L. Griffiths ◽  
...  

In this study, we seek to exclude other pathophysiological mechanisms by which Frmd7 knock-down may cause Idiopathic Infantile Nystagmus (IIN) using the Frmd7.tm1a and Frmd7.tm1b murine models. We used a combination of genetic, histological and visual function techniques to characterize the role of Frmd7 gene in IIN using a novel murine model for the disease. We demonstrate that the Frmd7.tm1b allele represents a more robust model of Frmd7 knock-out at the mRNA level. The expression of Frmd7 was investigated using both antibody staining and X-gal staining confirming previous reports that Frmd7 expression in the retina is restricted to starburst amacrine cells and demonstrating that X-gal staining recapitulates the expression pattern in this model. Thus, it offers a useful tool for further expression studies. We also show that gross retinal morphology and electrophysiology are unchanged in these Frmd7 mutant models when compared with wild-type mice. High-speed eye-tracking recordings of Frmd7 mutant mice confirm a specific horizontal optokinetic reflex defect. In summary, our study confirms the likely role for Frmd7 in the optokinetic reflex in mice mediated by starburst amacrine cells. We show that the Frmd7.tm1b model provides a more robust knock-out than the Frmd7.tm1a model at the mRNA level, although the functional consequence is unchanged. Finally, we establish a robust eye-tracking technique in mice that can be used in a variety of future studies using this model and others. Although our data highlight a deficit in the optiokinetic reflex as a result of the starburst amacrine cells in the retina, this does not rule out the involvement of other cells, in the brain or the retina where Frmd7 is expressed, in the pathophysiology of IIN.


2020 ◽  
Author(s):  
Yusaku Katada ◽  
Hiromitsu Kunimi ◽  
Kenta Kobayashi ◽  
Hideyuki Okano ◽  
Kenji F. Tanaka ◽  
...  

AbstractEctopic induction of optogenetic actuators, such as channelrhodopsin, is a promising approach to restore vision in the degenerating retina. However, the cell type-specific response of ectopic photoreception has not been well understood. It is not easy to obtain efficient gene expression in a specifically targeted cell population by a transgenic approach. In the present study, we established retinal ganglion cell (RGC)- and amacrine cell gene induction in a murine model with high efficiency using an improved tetracycline transactivator-operator bipartite system (KENGE-tet system). To investigate the cell type-specific visual restoration effect, we expressed the channel rhodopsin gene into RGCs and amacrine cells using this system. Then, enhancement of the visual restoration effect was observed by gene transfer not only to RGCs but also to starburst amacrine cells. It was suggested that photoresponse from amacrine cells enhanced the maintained response of ganglion cells and furthered the visual restoration effect.


Author(s):  
Santhosh Sethuramanujam ◽  
Akihiro Matsumoto ◽  
J. Michael McIntosh ◽  
Miao Jing ◽  
Yulong Li ◽  
...  

AbstractAcetylcholine (ACh) is a key neurotransmitter that plays diverse roles in many parts of the central nervous system, including the retina. However, assessing the precise spatiotemporal dynamics of ACh is technically challenging and whether ACh transmits signals via rapid, point-to-point synaptic mechanisms, or broader-scale ‘non-synaptic’ mechanisms has been difficult to ascertain. Here, we examined the properties of cholinergic transmission at individual contacts made between direction-selective starburst amacrine cells and downstream ganglion cells in the retina. Using a combination of electrophysiology, serial block-face electron microscopy, and two-photon ACh imaging, we demonstrate that ACh signaling bears the hallmarks of both non-synaptic and synaptic forms of transmission. ACh co-activates nicotinic ACh receptors located on the intersecting dendrites of pairs of ganglion cells, with equal efficiency (non-synaptic)— and yet retains the ability to generate rapid ‘miniature’ currents (∼1 ms rise times: synaptic). Fast cholinergic signals do not appear to depend on anatomically well-defined synaptic structures. We estimate that ACh spread is limited to ∼1-2 µm from its sites of release, which may help starbursts drive local direction-selective cholinergic responses in ganglion cell dendrites. Together, our results establish the functional architecture for cholinergic signaling at a central synapse and propose a novel motif whereby single presynaptic sites can co-transmit information to multiple neurons on a millisecond timescale.


Sign in / Sign up

Export Citation Format

Share Document